Verkehrsuntersuchung zum geplanten Baugebiet "Schießhütte II" in der Gemeinde Ober-Mörlen

im Auftrag der GEG Ober-Mörlen mbH

Erläuterungsbericht

28. Oktober 2019

Verkehrsuntersuchung zum geplanten Baugebiet "Schießhütte II" in der Gemeinde Ober-Mörlen

im Auftrag der GEG Ober-Mörlen mbH

Erläuterungsbericht

28. Oktober 2019

Bearbeitung:

Dipl.-Ing. Jörg Fleischer M.Sc. Jasmin Riedle Christoph Göbel

HEINZ + FEIER GmbH

Kreuzberger Ring 24 65205 Wiesbaden

Telefon 0611 71464 - 0 Telefax 0611 71464 - 79 E-Mail info@heinz-feier.de

INHALT

			Seite
1.	AUSC	SANGSSITUATION UND AUFGABENSTELLUNG	1
2.	VERK	CEHRLICHE SITUATION IM BESTAND	2
3.	ZUKÜ	INFTIGE VERKEHRSBELASTUNG	4
	3.1	Abschätzung des zusätzlichen Verkehrsaufkommens	4
	3.2	Zukünftige Kfz-Belastung	10
4.	LEIS1	TUNGSFÄHIGKEITSUNTERSUCHUNG	12
	4.1	Methodik	12
	4.2	Ergebnisse	14
5.	ZUSA	MMENFASSUNG UND EMPFEHLUNGEN	17

ANLAGEN

ABBILDUNGEN

1. AUSGANGSSITUATION UND AUFGABENSTELLUNG

Die Gemeinde Ober-Mörlen plant eine Erweiterung des Siedlungsgebietes südlich der B 275. Das geplante Baugebiet "Schießhütte II" wird von der Dr.-Werner-Stoll-Straße und der Hasselhecker Straße an der östlichen und westlichen Seite begrenzt, über die es auch erschlossen werden soll. Die Umsetzung des Bauvorhabens erfolgt in drei Bauabschnitten.

In der vorliegenden Verkehrsuntersuchung wird das zu erwartende Verkehrsaufkommen des Baugebietes separat für die drei geplanten Bauabschnitte abgeschätzt und die Verkehrsbelastungen in den Spitzenverkehrszeiten am Vor- und Nachmittag an den Knotenpunkten Usinger Straße (B 275) / Dr.-Werner-Stoll-Straße und Usinger Straße (B 275) / Hasselhecker Straße prognostiziert.

Grundlage der Berechnungen bilden aktuell durchgeführte Verkehrszählungen.

Anschließend wird die Leistungsfähigkeit der Knotenpunkte nach dem Handbuch für die Bemessung von Straßenverkehrsanlagen (HBS 2015) untersucht. Grundlage der Berechnungen bilden die prognostizierten Verkehrsbelastungen in den Spitzenverkehrszeiten am Vor- und Nachmittag.

Nachfolgend werden das methodische Vorgehen und die Ergebnisse der Verkehrsuntersuchung erläutert.

2. VERKEHRLICHE SITUATION IM BESTAND

Zur Erfassung des aktuellen Verkehrsgeschehens wurden am 25. Juni 2019 an den Knotenpunkten Usinger Straße / Dr.-Werner-Stoll-Straße und Usinger Straße / Hasselhecker Straße im Zuge der B 275 Verkehrszählungen durchgeführt. Die Lage der Erhebungsstellen ist in **Abbildung 1** dargestellt. Die Verkehrsströme wurden in der Zeit von 6.00 bis 10.00 Uhr sowie von 15.00 bis 19.00 Uhr mittels Videotechnik erfasst und anschließend ausgewertet. Dabei wurden die Verkehrsströme jeweils richtungsbezogen in Viertelstunden-Intervallen ermittelt und nach den folgenden Fahrzeugarten differenziert:

- Fahrrad
- Kraftrad
- Pkw / Kombi
- Lkw < 3,5 t (Transporter)
- Lkw > 3.5 t
- Bus
- Lastzug / Sattelzug
- Sonstige

Am Erhebungstag herrschte sonniges Wetter.

Die Ergebnisse der Verkehrszählungen für die Erhebungszeitbereiche am Vor- und Nachmittag sind in **Abbildung 2.1 und 2.2** dokumentiert. Die Belastungen in den Spitzenstunden am Vor- und Nachmittag sind in **Abbildung 3.1 und 3.2** dargestellt.

Durch Ober-Mörlen verläuft die Usinger Straße (B 275), die Bad Nauheim und die A 5 im Osten mit Usingen und dem Taunus im Westen verbindet. Im Zuge der Usinger Straße befinden sich die beiden zu untersuchenden Knotenpunkte. Am Vormittag (6.00 – 10.00 Uhr) ist die Fahrtrichtung Osten mit bis zu fast 1.500 Kfz/4h stärker belastet als die Gegenrichtung, die eine Belastung von knapp 1.000 Kfz/4h aufweist. Am Nachmittag kehrt sich die Hauptlastrichtung um. Die Belastungsdifferenz zwischen den beiden Fahrtrichtungen ist jedoch weniger stark ausgeprägt als vormittags. Es verkehren an den beiden Knotenpunkten zwischen 1.100 bis fast 1.300 Kfz/4h in Richtung Bad Nauheim und bis zu 1.400 Kfz/h in Fahrtrichtung Westen. Aus der Hasselhecker Straße fahren vormittags mit etwa 380 Kfz/4h deutlich weniger Fahrzeuge in den Knotenpunkt ein, als am Nachmittag (ca. 930 Kfz/4h). Die Belastungen der Dr.-Werner-Stoll-Straße sind am Vormittag und Nachmittag mit 80–90 Kfz/4h annähernd gleich.

In der Spitzenstunde am Vormittag ist die B 275 in den Abschnitten westlich der Hasselhecker Straße bis östlich der Dr.-Werner-Stoll-Straße mit etwa 650–670 Kfz/h im Querschnitt belastet. Der Knotenpunkt Usinger Str./Hasselhecker Str./Lekkerkerplatz weist im gleichen Zeitbereich über alle Zufahrten eine Belastung von knapp 900 Kfz/h auf. Die meisten Fahrzeuge (ca. 450 Kfz/h) fahren dem Knotenpunkt über die Usinger Straße aus Westen zu. Von diesen verbleiben ca. 68% auf der Bundesstraße. Die Gegenrichtung ist mit 290 Kfz/h belastet, hier verbleiben 60% auf der B 275. Die Fahrzeuge aus der Hasselhecker Straße verteilen sich zu ca. 35% nach Westen und etwa 52% nach Osten, die übrigen Fahrzeuge verkehren geradeaus in die Straße Lekkerkerplatz. Der Knotenpunkt Usinger Str. / Dr.-Werner-Stoll-Str. erfährt eine Belastung von ca. 690 Kfz/h. Aus der Dr.-Werner-Stoll-Straße fahren etwa 30 Kfz/h auf die B 275 ein, hiervon biegen ca. 45% in Fahrtrichtung Westen (Usingen) und knapp 55% in Fahrtrichtung A 5 / Bad Nauheim ein. Der Schwerverkehrsanteil an den Knotenpunkten beträgt 5% bzw. 7%.

In der Spitzenstunde am Nachmittag sind die Querschnittsbelastungen der betrachteten Abschnitte etwas höher als in der vormittäglichen Spitzenstunde. Sie betragen 700–780 Kfz/h. In die zwei Knotenpunkte fahren über alle Zufahrten ca. 980 Kfz/h bzw. 800 Kfz/h ein. Am Knotenpunkt Usinger Straße / Hasselhecker Straße ist die B275 aus beiden Fahrtrichtungen etwa gleich belastet (ca. 350 Kfz/h). Von diesen Fahrzeugen biegen 155 Kfz/h (ca. 22%) in die Hasselhecker Straße ab. Aus Richtung Süden fahren etwa 260 Kfz/h in den Knotenpunkt ein und verteilen sich mit etwa 46% nach rechts (Osten), ca. 43% nach links (Westen) und ca. 11% geradeaus (Norden). Am Knotenpunkt Usinger Straße / Dr.-Werner-Stoll-Straße ist die Belastung der Bundesstraße aus Westen (ca. 410 Kfz/h) etwas stärker als aus Osten (ca. 360 Kfz/h). Aus der Dr.-Werner-Stoll-Straße biegen 33 Kfz/h auf die B 275 ein, etwa 36% in Richtung Westen und knapp 64% in Richtung Osten. Der Anteil des Schwerverkehrs beträgt an beiden Knotenpunkten 3%.

3. ZUKÜNFTIGE VERKEHRSBELASTUNG

3.1 Abschätzung des zusätzlichen Verkehrsaufkommens

Das Verkehrsaufkommen des Baugebietes wird für jeden Bauabschnitt separat bestimmt. Art und Maß der Nutzungen jedes Bauabschnittes werden nach den Angaben des Auftraggebers angesetzt, bzw. dem Entwurf des Bebauungsplans entnommen. Demnach ist in dem Baugebiet überwiegend eine Wohnnutzung vorgesehen. Im Osten entstehen zudem eine Senioreneinrichtung sowie ein Mischgebiet im westlichen Baugebiet. Die Nutzungen teilen sich wie folgt auf die drei Bauabschnitte auf:

1. BA

- Einfamilienhäuser: 23 Wohneinheiten
- Mehrfamilienhäuser: 34 Wohneinheiten
- Senioreneinrichtung, Annahme: 50 Plätze (25 Pflegeplätze, 25 Plätze im Betreuten Wohnen)

2. BA

- Einfamilienhäuser/Reihenhäuser: 115 Wohneinheiten
- Mehrfamilienhäuser: 142 Wohneinheiten
- Mischgebiet: ca. 5.800 m²

3. BA

Einfamilienhäuser: 72 WohneinheitenMehrfamilienhäuser: 142 Wohneinheiten

Das Verkehrsaufkommen wird basierend auf den genannten Angaben zur Nutzung und unter Berücksichtigung spezifischer Kennwerte abgeschätzt. Die Abschätzung erfolgt getrennt für folgende Verkehrsarten:

- Einwohnerverkehr
- Beschäftigtenverkehr
- Kunden-/Besucherverkehr
- Lieferverkehr
- Ver- und Entsorgungsverkehr

Für die Berechnungen werden die aufgeführten Kenngrößen der Verkehrserzeugung angesetzt. Die Kennwerte wurden aus /1/ und /2/ abgeleitet.

Wohnnutzung

Einwohner

- 3,5 Einwohner/Wohneinheit (Einfamilien-/ Reihenhäuser)
- 2,5 Einwohner/Wohneinheit (Mehrfamilienhäuser)
- 3,5 Wege/Werktag
- 85% heimgebundene Wege
- 60% MIV-Anteil
- 1,5 Personen/Pkw Besetzungsgrad

Besucher

- 10% Anteil Besucherwege an Einwohnerwegen
- 60% MIV-Anteil
- 1,75 Personen/Pkw Besetzungsgrad

Ver- und Entsorgung

- 0,05 Lkw-Fahrten/Einwohner

Senioreneinrichtung

Bewohner

- 1 Weg/Bewohner (Pflege)
 - 2,3 Wege/Bewohner (Betreutes Wohnen)
- 90% heimgebundene Wege (Pflege)
 - 85% heimgebundene Wege (Betreutes Wohnen)
- 80% MIV-Anteil (Pflege)
 - 70% MIV-Anteil (Betreutes Wohnen)
- 0,7 Personen/Pkw Besetzungsgrad (Pflege, inkl. Hol-/Bringverkehr)
 - 1,4 Personen/Pkw Besetzungsgrad (Betreutes Wohnen)

Besucher

- 0,3 Besucher/Bewohner (Pflege)
 - 1,5 Besucher/Bewohner (Betreutes Wohnen)
- /1/ Forschungsgesellschaft für Straßen- und Verkehrswesen; Hinweise zur Schätzung des Verkehrsaufkommens von Gebietstypen; Köln, 2007
- /2/ Dr.-Ing. Dietmar Bosserhoff; Programm Ver_Bau: Abschätzung des Verkehrsaufkommens durch Vorhaben der Bauleitplanung; Gustavsburg, 2018

- 2,0 Wege/Werktag
- 60% MIV-Anteil
- 1,3 Personen/Pkw Besetzungsgrad

Beschäftigte

- 0,73 Beschäftigte/Bewohner (Pflege)
 0,17 Beschäftigte/Bewohner (Betreutes Wohnen)
- 80% Anwesenheit
- 2,2 Wege/Beschäftigtem
- 70% MIV-Anteil
- 1,1 Personen/Pkw Besetzungsgrad

Mischgebiet

Einwohner

- 100 Einwohner/ha
- 3,5 Wege/Werktag
- 90% heimgebundene Wege
- 60% MIV-Anteil
- 1,5 Personen/Pkw Besetzungsgrad

Besucher

- 10% Anteil Besucherwege an Einwohnerwegen
- 60% MIV-Anteil
- 1,75 Personen/Pkw Besetzungsgrad

Beschäftigte

- 75 Beschäftigte/ha
- 85% Anwesenheit
- 3,5 Wege/Einwohner
- 70% MIV-Anteil
- 1,1 Personen/Pkw Besetzungsgrad

Kunden

- 10 Kundenwege/Beschäftigtem
- 60% MIV-Anteil
- 1,1 Personen/Pkw Besetzungsgrad

Lieferungen

0,5 Lkw-Fahrten/Beschäftigtem

Ver- und Entsorgung

- 0,05 Lkw-Fahrten/Einwohner

Das berechnete tägliche Kfz-Fahrtenaufkommen ist in **Tabelle 1** zusammengefasst. Es sind für das gesamte Baugebiet etwa 2.635 Fahrten pro Tag zu erwarten. Der erste Bauabschnitt erzeugt dabei ca. 13% (352 Fahrten) des Gesamtaufkommens. Im zweiten und dritten Bauabschnitt erhöht sich das tägliche Verkehrsaufkommen um 1.458 bzw. weitere 825 Kfz-Fahrten. Die täglichen Kfz-Fahrten setzen sich jeweils zur Hälfte aus Quell- und Zielverkehr zusammen.

	Bauabschnitt 1 [Kfz-Fahrten/24h]	Bauabschnitt 2 [Kfz-Fahrten/24h]	Bauabschnitt 3 [Kfz-Fahrten/24h]
Einwohner	247	974	722
Beschäftigte	32	83	-
Kunden / Besucher	62	338	73
Lieferungen	-	22	-
Ver- und Entsorgung	11	41	30
Summe [Kfz/SV]	352/11	1.458/63	825/30

Tabelle 1: Durchschnittliche auf das geplante Baugebiet bezogene Kfz-Fahrten pro Normalwerktag

Die Zu- und Abflüsse des Baugebietes werden für die Spitzenstunden anhand des täglichen Verkehrsaufkommens berechnet. Die Stundenanteile für den Quell- und Zielverkehr orientieren sich an den Zu- und Abflussganglinien aus /3/. Diese sind in **Tabelle 2** zusammengefasst.

HEINZ + FEIER GmbH

^{/3/} Dr.-Ing. Dietmar Bosserhoff; Programm Ver_Bau: Abschätzung des Verkehrsaufkommens durch Vorhaben der Bauleitplanung; Gustavsburg, 2018

	Vorm	nittag	Nachmittag		
	Zufluss	Abfluss	Zufluss	Abfluss	
Einwohner	2%	15%	14%	8%	
Bewohner (Senioreneinrichtung)	2%	10%	14%	8%	
Besucher	3%	3%	12%	8%	
Besucher (Senioreneinrichtung)	2%	1%	12%	8%	
Beschäftigte (Senioreneinrichtung)	9%	5%	2%	14%	
Beschäftigte (Mischgebiet)	11%	3%	5%	8%	
Kunden (Mischgebiet)	1%	1%	12%	11%	
Lieferungen (Mischgebiet)	2%	1%	8%	7%	
Ver-/Entsorgung	8%	5%	7%	9%	

Tabelle 2: Stundenanteile am Kfz-Aufkommen an Normalwerktagen

Das mit Hilfe der Stundenanteile berechnete Verkehrsaufkommen des Baugebietes "Schießhütte II" in den Spitzenstunden am Vor- und Nachmittag ist in den **Tabellen 3 bis 5** für die einzelnen Bauabschnitte zusammengefasst. In der Spitzenstunde am Vormittag sind im 1. Bauabschnitt 4 Kfz-Fahrten im Zielverkehr und 19 Fahrten im Quellverkehr zu erwarten. Nachmittags fließen 22 Kfz/h dem Baugebiet zu und 15 Kfz/h ab. Nach dem 2. Bauabschnitt erhöht sich das Verkehrsaufkommen des Baugebietes vormittags um 19 Kfz-Fahrten im Zufluss und 77 Kfz-Fahrten im Abfluss. Am Nachmittag werden im Zufluss und Abfluss 92 bzw. 62 Kfz-Fahrten zusätzlich abgeschätzt. Der 3. Bauabschnitt vervollständigt das geplante Baugebiet. In der letzten Erweiterungsstufe nimmt das Verkehrsaufkommen am Vormittag um 9 zufließende Kfz und 56 abfließende Kfz zu. Nachmittags erhöhen sich der Zufluss um 56 Fahrten und der Abfluss um 33 Fahrten im Kfz-Verkehr.

1. Bauabschnitt	Vorm	nittag	Nachmittag		
1. Bauabschnitt	Zufluss	Abfluss	Zufluss	Abfluss	
Einwohner	3	18	18	10	
Besucher	0	0	4	3	
Beschäftigte	1	1	0	2	
Ver- und Entsorgung	0	0	0	0	
Summe [Kfz/SV /h]	4/0	19/0	22/0	15/0	

Tabelle 3: Kfz-Fahrten [Kfz/SV] in den Spitzenstunden am Vor- und Nachmittag für den 1. Bauabschnitt

2. Bauabschnitt	Vorm	nittag	Nachmittag		
2. Bauabschilltt	Zufluss	Abfluss	Zufluss	Abfluss	
Einwohner	10	73	68	39	
Besucher	1 1		6	4	
Beschäftigte	5	1	2	3	
Kunden	1	1	14	13	
Lieferungen	0	0	1	1	
Ver- und Entsorgung	2	1	1	2	
Summe [Kfz/SV /h]	19/2	77/1	92/2	62/3	

Tabelle 4: Kfz-Fahrten [Kfz/SV] in den Spitzenstunden am Vor- und Nachmittag für den 2. Bauabschnitt

2 Paughaghnitt	Vorm	nittag	Nachmittag		
3. Bauabschnitt	Zufluss	Abfluss	Zufluss	Abfluss	
Einwohner	7	54	51	29	
Besucher	1	1	4	3	
Ver- und Entsorgung	1	1	1	1	
Summe [Kfz/SV /h]	9/1	56/1	56/1	33/1	

Tabelle 5: Kfz-Fahrten [Kfz/SV] in den Spitzenstunden am Vor- und Nachmittag für den 3. Bauabschnitt

3.2 Zukünftige Kfz-Belastung

An den zu untersuchenden Knotenpunkten werden die zukünftig in den Spitzenstunden am Vor- und Nachmittag zu erwartenden Verkehrsbelastungen prognostiziert. Dabei werden neben dem zusätzlich zu erwartenden Verkehrsaufkommen des Baugebietes auch weitere verkehrlich relevante Entwicklungen berücksichtigt. Hierzu wird eine allgemeine Verkehrszunahme von 5% in allen Knotenpunktzufahrten angesetzt, welche aus der Analyse und dem Prognosenullfall im Jahr 2030 der VDRM /4/ für den Abschnitt der B 275 in Ober-Mörlen abgeleitet wird.

Das zusätzlich zu erwartenden Verkehrsaufkommens durch das Baugebiet wird in Anlehnung an die erhobenen Verkehrsbelastungen räumlich verteilt. Dabei kommt der Usinger Straße (B 275), die Ober-Mörlen in Ost-West-Richtung durchschneidet, eine wesentliche Bedeutung zu. Sie stellt eine direkte Verbindung in/aus Richtung Usingen (Westen) und in/aus Richtung Bad Nauheim und A 5 (Osten) dar. Zudem besteht über den weiteren Verlauf der Hasselhecker Straße eine weitere direkte Verbindung in die Innenstadt von Bad Nauheim. Es wird angenommen, dass sich das Verkehrsaufkommen wie folgt verteilt:

- 30% in/aus Richtung Usingen
- 55% in/aus Richtung Anschlussstelle A 5 und Bad Nauheim

^{/4/} ptv AG; Verkehrsdatenbasis Rhein-Main; im Auftrag von Hessen Mobil – Straßenund Verkehrsmanagement; August 2016; Karlsruhe.

15% über südliche Anbindung in/aus Richtung Bad Nauheim

Die Verbindung zwischen dem geplanten Baugebiet und der Usinger Straße (B 275) wird zum einen über die Dr.-Werner-Stoll-Straße und zum anderen über die Hasselhecker Straße hergestellt. Die Anbindung des ersten Bauabschnittes erfolgt ausschließlich über die Dr.-Werner-Stoll-Straße. Nach Realisierung des 2. und 3. Bauabschnitts wird davon ausgegangen, dass sich die Verkehrsströme in/aus Richtung Osten und Westen jeweils hälftig auf die Hasselhecker Straße und die Dr.-Werner-Stoll-Straße aufteilen. Der Verkehr des Mischgebietes am südwestlichen Rand des Baugebietes verkehrt ausschließlich über die Hasselhecker Straße. Die Fahrten in/aus Richtung Bad Nauheim, die über die südliche Anbindung verlaufen, belasten die zu untersuchenden Knotenpunkte nicht.

Die aus den Berechnungen resultierenden Verkehrsbelastungen an den zu untersuchenden Knotenpunkten in den betrachteten Spitzenstunden am Vorund Nachmittag an Normalwerktagen sind in den **Abbildungen 4 bis 6** dargestellt.

4. LEISTUNGSFÄHIGKEITSUNTERSUCHUNG

4.1 Methodik

Die Beurteilung der Verkehrsverhältnisse erfolgt nach dem Handbuch für die Bemessung von Straßenverkehrsanlagen (HBS 2015) /5/ und wird ausschließlich für den motorisierten Individualverkehr (MIV) durchgeführt. Die Berechnungen werden für die Stundenbelastungen in der Spitzenverkehrszeit am Vor- und Nachmittag an Normalwerktagen vorgenommen. Außerhalb der Spitzenverkehrszeiten sind aufgrund der geringeren Belastungen niedrigere mittlere Wartezeiten und geringere Auslastungen zu erwarten. Daher kann zu diesen Zeiten in der Regel von einer besseren Qualität des Verkehrsablaufs (QSV) ausgegangen werden.

Die Verkehrsqualität wird in Abhängigkeit von der mittleren Wartezeit der einzelnen Kraftfahrzeugströme definiert. Maßgebend für die Gesamtbeurteilung eines Knotenpunktes ist die schlechteste Qualität aller beteiligten Verkehrsströme bzw. Fahrstreifen. Das Berechnungsverfahren betrachtet dabei die Knotenpunkte jeweils separat. Wechselwirkungen zwischen benachbarten Knotenpunkten können nicht abgebildet werden.

Grundlage der Berechnungen bilden die in den betrachteten Spitzenstunden am Vor- und Nachmittag ermittelten Belastungen (s. Kapitel 3.2). Für die Leistungsfähigkeitsberechnung werden die Belastungen der einzelnen Fahrstreifen benötigt. Diese ergeben sich unmittelbar aus den Fahrbeziehungen.

Für die Betrachtungen nach HBS 2015 werden die Verkehrsbelastungen in Leichtverkehr (Kraftrad, Pkw und Lieferwagen) und Schwerverkehr - unterteilt in Lkw, Lkw-Fahrzeugkombination und Bus - aufgeschlüsselt.

Die Leistungsfähigkeit der Knotenpunktzufahrt Hasselhecker Straße wird dabei mit einer Aufweitung berechnet. Die Fahrspur weist hier eine Breite von etwa 5 m auf. Zudem ist in den Videoaufzeichnungen zu sehen, dass zwei Pkw aneinander vorbei fahren können und dies auch praktiziert wird. Aufgrund des sehr geringen Schwerverkehranteils (ca. 3 %) haben Situationen, in denen sich die Fahrzeuge nicht nebeneinander aufstellen können, keine nennenswerten Einfluss.

^{/5/} Forschungsgesellschaft für Straßen- und Verkehrswesen, Kommission Bemessung von Straßenverkehrsanlagen; Handbuch für die Bemessung von Straßenverkehrsanlagen, HBS, Teil S Stadtstraßen; Köln, 2015

Knotenpunkte ohne Lichtsignalanlage

Knotenpunkte mit Vorfahrtbeschilderung und Kreisverkehre, die eine mittlere Wartezeit des wartepflichtigen Stroms von bis zu 45 Sekunden aufweisen, sind als ausreichend leistungsfähig anzusehen. Die einzelnen Qualitätsstufen (QSV) mit Beschreibung des Verkehrszustandes sind in **Tabelle 6** angegeben.

Qualitäts- stufe	Mittlere Wartezeit	Definition
Α	≤ 10 s	Die Mehrzahl der Verkehrsteilnehmer kann nahezu ungehindert den Knotenpunkt passieren. Die Wartezeiten sind sehr gering.
В	≤ 20 s	Die Abflussmöglichkeiten der wartepflichtigen Verkehrsströme werden vom bevorrechtigten Verkehr beeinflusst. Die dabei entstehenden Wartezeiten sind gering.
С	≤ 30 s	Die Verkehrsteilnehmer in den Nebenströmen müssen auf eine merkbare Anzahl von bevorrechtigten Verkehrsteilnehmern achten. Die Wartezeiten sind spürbar. Es kommt zur Bildung von Stau, der jedoch weder hinsichtlich seiner räumlichen Ausdehnung noch bezüglich der zeitlichen Dauer eine starke Beeinträchtigung darstellt.
D	≤ 45 s	Die Mehrzahl der Verkehrsteilnehmer in den Nebenströmen muss Haltevorgänge, verbunden mit deutlichen Zeitverlusten, hinnehmen. Für einzelne Verkehrsteilnehmer können die Wartezeiten hohe Werte annehmen. Auch wenn sich vorübergehend ein merklicher Stau in einem Nebenstrom ergeben hat, bildet sich dieser wieder zurück. Der Verkehrszustand ist noch stabil.
E	> 45 s	Es bilden sich Staus, die sich bei der vorhandenen Belastung nicht mehr abbauen. Die Wartezeiten nehmen sehr große und dabei stark streuende Werte an. Geringfügige Verschlechterungen der Einflussgrößen können zum Verkehrszusammenbruch (d.h. ständig zunehmende Staulänge) führen. Die Kapazität wird erreicht.
F	- (q _i > C _i)	Die Anzahl der Fahrzeuge, die in einem Verkehrsstrom dem Knotenpunkt je Zeiteinheit zufließen, ist über eine Stunde größer als die Kapazität für diesen Verkehrsstrom. Es bilden sich lange, ständig wachsende Staus mit besonders hohen Wartezeiten. Diese Situation löst sich erst nach einer deutlichen Abnahme der Verkehrsstärken im zufließenden Verkehr wieder auf. Der Knotenpunkt ist überlastet.

Tabelle 6: Grenzwerte der mittleren Wartezeit im Kfz-Verkehr für die Qualitätsstufen an Knotenpunkten mit Vorfahrtregelung und Kreisverkehren (nach HBS 2015)

4.2 Ergebnisse

Nachfolgend werden die Ergebnisse der Leistungsfähigkeitsberechnungen beschrieben. Die detaillierten Ergebnisse der Berechnungen für die zu untersuchenden Knotenpunkte sind in **Anlage 1** für den Bestand und den **Anlagen 2 bis 4** für die drei Bauabschnitte - jeweils für die Spitzenstunden am Vormittag und am Nachmittag - dokumentiert.

Bestand

Im Bestand erreicht der Knotenpunkt Usinger Straße (B 275) /Hasselhecker Straße am Vor- und Nachmittag Qualitätsstufe B. In den Spitzenstunden ist der Verkehrsstrom der Linkseinbieger aus der Hasselhecker Straße maßgebend. Es tritt eine mittlere Wartezeit von etwa 13 bzw. 15 Sekunden auf. Als Staulängen mit einer Sicherheit gegen Überstauen von 95% werden 13 m berechnet.

Die Einmündung Usinger Straße (B275) / Dr.-Werner-Stoll-Straße weist die Qualitätsstufe A auf. Diese wird am Vormittag und am Nachmittag erreicht. In beiden Spitzenstunden sind die Linkseinbieger aus der Dr.-Werner-Stoll-Straße maßgebend. Es treten hier mittlere Wartezeiten von 8 bzw. 10 Sekunden auf. Die Staulängen sind mit 7 m gering.

Bauabschnitt 1

Mit den prognostizierten Belastungen des ersten Bauabschnitts erreicht der Knotenpunkt Usinger Straße / Hasselhecker Straße vormittags und nachmittags die Qualitätsstufe B. Somit ändert sich diese gegenüber dem Bestand nicht. Die maßgebende Wartezeit der Linkseinbieger aus der Hasselhecker Straße erhöht sich auf ca. 15 bzw. 18 Sekunden. Die berechnete Rückstaulänge, die zu 95% nicht überschritten wird, beträgt am Vormittag weiterhin 13 m. In der Spitzenstunde am Nachmittag nimmt die errechnete Rückstaulänge auf 19 m zu. Die Leistungsfähigkeit ist nach wie vor in beiden Spitzenstunden gegeben.

Der Knotenpunkt Usinger Straße / Dr.-Werner-Stoll-Straße erreicht vormittags QSV A und nachmittags QSV B. Gegenüber der mittleren Wartezeit im Bestand erhöht sich diese in beiden Spitzenstunden für die Linkseinbieger auf die B 275 um eine Sekunde auf 9 bzw. 11 Sekunden. Die Staulängen verändern sich nicht.

Bauabschnitt 2

Nach Realisierung des zweiten Bauabschnitts nimmt die Verkehrsbelastung an den Knotenpunkten weiter zu. Am westlichen Knotenpunkt erreicht der Verkehrsstrom der Linkseinbieger auf die B 275 am Vormittag eine mittlere Wartezeit von knapp 16 Sekunden. Die längsten Stauerscheinungen treten mit 13 m in den südlichen und westlichen Knotenpunktzufahrten auf. Nachmittags steigt die mittlere Wartezeit der Linkseinbieger aus Süden auf ca. 24 Sekunden und die maßgebende Rückstaulänge auf 25 m. Vormittags wird QSV B und nachmittags QSV C erreicht. Der Knotenpunkt ist damit in beiden Spitzenstunden rechnerisch leistungsfähig.

Am Knotenpunkt Usinger Straße / Dr.-Werner-Stoll-Straße ändern sich die Qualitätsstufen gegenüber denen nach Bauabschnitt eins nicht. Vormittags wird weiterhin QSV A und nachmittags QSV B erreicht. Die maßgebenden mittleren Wartezeiten der Linkseinbieger auf die B 275 betragen ca. 10 bzw. 13 Sekunden. Die Rückstaulängen werden auch hier mit 7 m berechnet.

Bauabschnitt 3

Mit der Umsetzung des dritten Bauabschnitts wird das Baugebiet vervollständigt. Am westlichen Knotenpunkt Usinger Straße / Hasselhecker Straße wird die Leistungsfähigkeit am Vormittag QSV B zugeordnet. Die maßgebende mittlere Wartezeit beträgt ca. 18 Sekunden und tritt für die Linkseinbieger aus der Hasselhecker Straße auf. Für diese Knotenpunktzufahrt wird auch der längste Rückstau mit 13 m (entspricht 2 bis 3 Fahrzeugen) berechnet. Nachmittags ist ebenfalls die Hasselhecker Straße für die Qualitätsstufe maßgebend. Mit einer mittleren Wartezeit von etwa 30 Sekunden entspricht dies der Qualitätsstufe C. Auch die Rückstaulänge erhöht sich gegenüber dem Vormittag auf 31 m. Der Knotenpunkt Usinger Straße / Hasselhecker Straße ist demnach als leistungsfähig einzustufen.

Der Knotenpunkt Usinger Straße / Dr.-Werner-Stoll-Straße erreicht am Vorund Nachmittag Qualitätsstufe B. Die maximalen mittleren Wartezeiten betragen etwa 10 bzw. 14 Sekunden. Der Knotenpunkt ist demnach auch mit dem prognostizierten Verkehrsaufkommen leistungsfähig. Der längste Stau bei einer Sicherheit gegen Überstauen von 95% tritt mit 13 m nachmittags in der östlichen Usinger Straße auf. Hier ist zu berücksichtigen, dass unmittelbar östlich die Ludwigstraße in die Usinger Straße einmündet und die Gefahr besteht, dass diese bei einem längeren Rückstau (ab ca. 20 m) überstaut

wird. Aufgrund der Berechnungsergebnisse kann jedoch davon ausgegangen werden, dass dies in der Regel nicht eintrifft.

5. ZUSAMMENFASSUNG UND EMPFEHLUNGEN

Die heutige Verkehrsbelastung im Umfeld des geplanten Baugebietes "Schießhütte II" wurde durch Verkehrszählungen an den Knotenpunkten Usinger Straße (B 275) / Hasselhecker Straße und Usinger Straße (B 275) / Dr.-Werner-Stoll-Straße erhoben. Sie bilden die Grundlage für die prognostischen Betrachtungen.

Das zu erwartende Verkehrsaufkommen des Baugebietes "Schießhütte II" wurde anhand der vorliegenden Informationen und Daten für die drei vorgesehenen Realisierungsstufen abgeschätzt. Das Verkehrsaufkommen des gesamten Baugebietes (nach Realisierung des 3. Bauabschnittes) beläuft sich auf ca. 2.700 Kfz-Fahrten pro Tag. In den Spitzenstunden treten vormittags 180 Kfz-Fahrten/h und nachmittags etwa 280 Kfz-Fahrten/h auf.

Unter Berücksichtigung einer allgemeinen Verkehrszunahme wird anschließend die Verkehrsbelastung in den Spitzenstunden am Vor- und Nachmittag an den beiden zu untersuchenden Knotenpunkten im Zuge der Usinger Straße prognostiziert. Durch die angesetzte allgemeine Verkehrszunahme von 5% ergibt sich im absoluten Vergleich eine höhere Zunahme der Verkehrsbelastungen an den Knotenpunkten als durch den ersten Bauabschnitt des Baugebietes.

Auf der Grundlage der erhobenen und prognostizierten Verkehrsbelastungen werden die beiden Knotenpunkte nach dem Handbuch für die Bemessung von Straßenverkehrsanlagen (HBS 2015) auf ihre Leistungsfähigkeit untersucht. Die Ergebnisse der Berechnungen zeigen, dass das bestehende Verkehrsaufkommen an beiden Knotenpunkten sowohl in der Spitzenstunde am Vormittag, wie auch am Nachmittag leistungsfähig abgewickelt werden kann. Es wird Qualitätsstufe A bzw. B erreicht (vgl. **Tabelle 7**).

	Usinger Str / Ha	asselhecker Str.	Usinger Str. / DrWerner-Stoll- Str.		
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	N. 1 144	_		
	Vormittag	Nachmittag	Vormittag	Nachmittag	
Bestand	В	В	Α	Α	
Mit BA 1	В	В	Α	В	
Mit BA2	В	С	Α	В	
Mit BA 3	В С		В	В	

Tabelle 7: Übersicht Qualitätsstufen

Durch das zusätzliche Verkehrsaufkommen des ersten Bauabschnitts ist nur mit geringfügigen Zunahmen der mittleren Wartezeiten zu rechnen. Die im Bestand

erreichten Qualitätsstufen bleiben unverändert bestehen. Die Knotenpunkte sind demnach leistungsfähig. Das erwartete Verkehrsaufkommen des zweiten Bauabschnitts führt am Vormittag ebenfalls zu keinen Veränderungen der Qualitätsstufen. Am Nachmittag erreicht der Knotenpunkt Usinger Straße (B 275) / Hasselhecker Straße die Qualitätsstufe C. Die Leistungsfähigkeit ist an beiden Knotenpunkten weiterhin gegeben.

Nach Realisierung des gesamten Baugebietes weist der Knotenpunkt Usinger Straße (B 275) / Hasselhecker Straße in der Spitzenstunde am Vormittag die Qualitätsstufe B und am Nachmittag C auf. Der Knotenpunkt Usinger Straße / Dr.-Werner-Stoll-Straße erreicht in beiden Spitzenstunden Qualitätsstufe B. Somit sind beide Knotenpunkte ausreichend leistungsfähig. Auch zukünftig sind keine baulichen und/oder verkehrsregelnde Maßnahmen zur Gewährleistung einer ausreichenden Verkehrsqualität erforderlich.

Wiesbaden, im Oktober 2019

HEINZ + FEIER GmbH

ANLAGEN

- Anlage 1: Ergebnisse der Leistungsfähigkeitsberechnungen für die untersuchten Knotenpunkte - Bestand
- **Anlage 2:** Ergebnisse der Leistungsfähigkeitsberechnungen für die untersuchten Knotenpunkte, Bauabschnitt 1 Prognose
- **Anlage 3:** Ergebnisse der Leistungsfähigkeitsberechnungen für die untersuchten Knotenpunkte, Bauabschnitt 2 Prognose
- **Anlage 4:** Ergebnisse der Leistungsfähigkeitsberechnungen für die untersuchten Knotenpunkte, Bauabschnitt 3 Prognose

Anlage 1: Ergebnisse der Leistungsfähigkeitsberechnungen für die untersuchten Knotenpunkte - Bestand

Anlage 1.1: Usinger Straße (B 275) / Hasselhecker Straße

Anlage 1.2: Usinger Straße (B 275) / Dr.-Werner-Stoll-Straße

Beurteilung einer Kreuzung mit Vorfahrtsregelung innerorts Zufahrt D A-C Knotenpunkt: Usinger Straße Hasselhecker Str./Lekkerke Datum: Bestand Verkehrsdaten: Analyse Uhrzeit: Vormittag Verkehrsregelung: Zufahrt B: Zufahrt D: Mittlere Wartezeit $t_W = 45 s$ Zielvorgaben: Knotenverkehrsstärke: 875 Fz/h Qualitätsstufe: D

Aufschlüsselung nach Fahrzeugarten:

liegt vor, mit Differenzierung des Schwerverkehrs

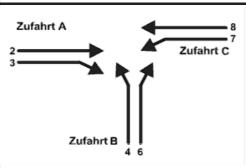
	Kapazitäten der Einzelströme												
		Hauptströme	Grundkap.	Abminderungs-	Kapazität	Auslastungs-	staufreier	staufreier					
Zufahrt	Strom	$q_{p,i}$	G_{i}	faktor f _f	$C_{PE,i}$	grad x _i	Zustand	Zustand					
	(Rang)	[Fz/h]	[Pkw-E/h]	[-]	[Pkw-E/h]	[-]	p_0	p _x bzw. p _z					
	1 (2)	199	1025	1,000	1025	0,004	0,995	0,855					
Α	2 (1)		1800	1,000	1800	0,174	1,000						
	3 (1)	0	1600	1,000	1600	0,088	1,000						
	4 (4)	687	394	1,000	317	0,118							
В	5 (3)	670	388	1,000	332	0,039	0,961	0,826					
	6 (2)	376	611	1,000	611	0,104	0,896						
	7 (2)	445	775	1,000	775	0,124	0,860	0,855					
С	8 (1)		1800	1,000	1800	0,099	1,000						
	9 (1)	0	1600	1,000	1600	0,016	1,000						
	10 (4)	657	460	1,000	341	0,009							
D	11 (3)	727	394	1,000	337	0,053	0,947	0,816					
	12 (2)	187	955	1,000	955	0,013	0,987						

	Qualität der Einzel- und Mischströme												
		Fahrzeuge	Faktoren	Kapazität	Kapazität	Auslastungs-	Kapazitäts-	mittlere	Qualitäts-				
Zufahrt	Strom	$q_{\text{Fz},i}$	$f_{PE,i}$	$C_{PE,i}$	C _i	grad x _i	reserve R _i	Wartezeit w	stufe				
		[Fz/h]	[-]	[Pkw-E/h]	[Fz/h]	[-]	[Fz/h]	[s]	QSV				
	1	4	1,000	1025	1025	0,004	1021	3,5	Α				
Α	2	306	1,021	1800	1763	0,174	1457	0,0	Α				
	3	139	1,007	1600	1589	0,088	1450	0,0	Α				
	4	36	1,042	317	305	0,118	269	13,4	В				
В	5	13	1,000	332	332	0,039	319	11,3	В				
	6	54	1,176	611	520	0,104	466	7,7	Α				
	7	91	1,055	775	734	0,124	643	5,6	Α				
С	8	174	1,029	1800	1750	0,099	1576	0,0	Α				
	9	25	1,040	1600	1538	0,016	1513	0,0	Α				
	10	3	1,000	341	341	0,009	338	10,7	В				
D	11	18	1,000	337	337	0,053	319	11,3	В				
	12	12	1,000	955	955	0,013	943	3,8	Α				
Α	1+2+3	449	1,017	1800	1770	0,254	1321	2,7	Α				
В	4+5+6	103	1,107	675	610	0,169	507	7,1	Α				
С	7+8+9	290	1,038	1800	1734	0,167	1444	2,5	Α				
D	10+11+12	33	1,000	441	441	0,075	408	8,8	Α				
			erreic	hbare Qualität	sstufe QSV _{FZ,}	ges			В				

	Stauraumbemessung - Abbiegeströme											
		Fahrzeuge	Faktoren	Kapazität								
Zufahrt	Strom	$q_{Fz,i}$	$f_{PE,i}$	C_{i}	S	Ns	Staulänge					
		[Fz/h]	[-]	[Fz/h]	[%]	[Fz]	[m]					
Α	1+2+3	449	1,017	1770	95	1,02	13					
В	4+5+6	103	1,107	610	95	0,61	7					
ь												
С	7+8+9	290	1,038	1734	95	0,60	7					
C												
D	10+11+12	33	1	441	95	0,24	6					

Beurteilung einer Kreuzung mit Vorfahrtsregelung innerorts Zufahrt D A-C Knotenpunkt: Usinger Straße Hasselhecker Str./Lekkerke Datum: Bestand Verkehrsdaten: Analyse Uhrzeit: Nachmittag Verkehrsregelung: Zufahrt B: Zufahrt D: Mittlere Wartezeit $t_W = 45 s$ Zielvorgaben: Knotenverkehrsstärke: 975 Fz/h Qualitätsstufe: D

Aufschlüsselung nach Fahrzeugarten:


liegt vor, mit Differenzierung des Schwerverkehrs

	Kapazitäten der Einzelströme												
		Hauptströme	Grundkap.	Abminderungs-	Kapazität	Auslastungs-	staufreier	staufreier					
Zufahrt	Strom	$q_{p,i}$	G_{i}	faktor f _f	$C_{PE,i}$	grad x _i	Zustand	Zustand					
	(Rang)	[Fz/h]	[Pkw-E/h]	[-]	[Pkw-E/h]	[-]	p_0	p _x bzw. p _z					
	1 (2)	267	949	1,000	949	0,004	0,995	0,875					
Α	2 (1)		1800	1,000	1800	0,155	1,000						
	3 (1)	0	1600	1,000	1600	0,045	1,000						
	4 (4)	664	406	1,000	346	0,320							
В	5 (3)	664	391	1,000	342	0,079	0,921	0,814					
	6 (2)	308	658	1,000	658	0,185	0,815						
	7 (2)	343	870	1,000	870	0,102	0,879	0,875					
С	8 (1)		1800	1,000	1800	0,129	1,000						
	9 (1)	0	1600	1,000	1600	0,023	1,000						
	10 (4)	646	467	1,000	310	0,006							
D	11 (3)	681	420	1,000	367	0,014	0,986	0,864					
	12 (2)	249	886	1,000	886	0,015	0,985						

			Qualitä	t der Ein	zel- und	Mischstr	öme		
		Fahrzeuge	Faktoren	Kapazität	Kapazität	Auslastungs-	Kapazitäts-	mittlere	Qualitäts-
Zufahrt	Strom	$q_{Fz,i}$	$f_{PE,i}$	$C_{PE,i}$	C _i	grad x _i	reserve R _i	Wartezeit w	stufe
		[Fz/h]	[-]	[Pkw-E/h]	[Fz/h]	[-]	[Fz/h]	[s]	QSV
	1	4	1,000	949	949	0,004	945	3,8	Α
Α	2	273	1,024	1800	1758	0,155	1485	0,0	Α
3 70 1,021 1600 1566 0,045 1496 0,0									
	4	110	1,005	346	344	0,320	234	15,4	В
В	5	27	1,000	342	342	0,079	315	11,4	В
	6	119	1,021	658	645	0,185	526	6,8	Α
	7	85	1,047	870	831	0,102	746	4,8	Α
С	8	230	1,007	1800	1788	0,129	1558	0,0	Α
	9	37	1,000	1600	1600	0,023	1563	0,0	Α
	10	2	1,000	310	310	0,006	308	11,7	В
D	11	5	1,000	367	367	0,014	362	9,9	Α
	12	13	1,000	886	886	0,015	873	4,1	Α
Α	1+2+3	347	1,023	1800	1759	0,197	1412	2,5	Α
В	4+5+6	256	1,012	667	660	0,388	404	8,9	Α
С	7+8+9	352	1,016	1800	1772	0,199	1420	2,5	Α
D 10+11+12 20 1,000 576 576 0,035 556 6,5									Α
			erreic	hbare Qualität	sstufe QSV _{FZ}	ges			В

Stauraumbemessung - Abbiegeströme Fahrzeuge Faktoren Kapazität $q_{\text{Fz},i}$ C_{i} S Staulänge Zufahrt Strom $f_{\mathsf{PE},i}$ N_{S} [Fz/h] [-] [Fz/h] [%] [Fz] [m] 1+2+3 347 1,023 1759 95 0,74 7 Α 4+5+6 256 1,012 660 95 1,88 13 В 0,74 7+8+9 352 1,016 1772 95 7 С 10+11+12 20 576 95 0,11 6 D

Beurteilung einer Einmündung mit Vorfahrtsregelung innerorts

A-C /B
Knotenpunkt: Usinger Straße Dr.-Werner-Stoll-Str.

Verkehrsdaten: Datum: Bestand Analyse

Uhrzeit: Vormittag

Verkehrsregelung: Zufahrt B:

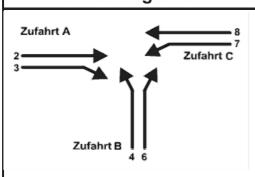
 ∇

Zielvorgaben: Mittlere Wartezeit $t_W = 45 s$

Qualitätsstufe: **D**

Knotenverkehrsstärke: 694 Fz/h

Aufschlüsselung nach Fahrzeugarten:


liegt vor, mit Differenzierung des Schwerverkehrs

	Kapazitäten der Einzelströme											
		Hauptströme	Grundkap.	Abminderungs-	Kapazität	Auslastungs-	staufreier					
Zufahrt	Strom	$q_{\mathbf{p},\mathbf{i}}$	G_{i}	faktor f _f	$C_{PE,i}$	grad x _i	Zustand					
	(Rang)	[Fz/h]	[Pkw-E/h]		[Pkw-E/h]	[-]	p_0					
Α	2 (1)		1800	1,000	1800	0,205						
A	3 (1)	0	1600	1,000	1600	0,010						
В	4 (3)	656	461	1,000	453	0,031						
Ь	6 (2)	362	771	1,000	771	0,023						
С	7 (2)	369	845	1,000	845	0,014	0,983					
	8 (1)		1800	1,000	1800	0,164						

			Qualität	der Einze	el- und N	/lischstr	öme				
		Fahrzeuge	Faktoren	Kapazität	Kapazität	Auslastungs-	Kapazitäts-	mittlere	Qualitäts-		
Zufahrt	Strom	$q_{Fz,i}$	$f_{PE,i}$	$C_{PE,i}$	$C_{\rm i}$	grad x _i	reserve R _i	Wartezeit w	stufe		
		[Fz/h]	[-]	[Pkw-E/h]	[Fz/h]	[-]	[Fz/h]	[s]	QSV		
^	2	354	1,042	1800	1727	0,205	1373	0,0	Α		
A	A 3 15 1,067 1600 1500 0,010 1485 0,0										
В	4	14	1,000	453	453	0,031	439	8,2	Α		
В	6	17	1,059	771	729	0,023	712	5,1	Α		
С	7	12	1,000	845	845	0,014	833	4,3	Α		
C	8	282	1,044	1800	1724	0,164	1442	0,0	Α		
Α	2+3	369	1,043	1791	1716	0,215	1347	0,0	Α		
В	4+6	31	1,032	590	572	0,054	541	6,7	Α		
С	7+8	294	1,043	1800	1727	0,170	1433	2,5	Α		
	erreichbare Qualitätsstufe QSV _{FZ.ges}										

	Stauraumbemessung - Abbiegeströme											
Zufahrt	Strom	Fahrzeuge q _{Fz,i} [Fz/h]	Faktoren f _{PE,i} [-]	Kapazität C _i [Fz/h]	S [%]	N _S [Fz]	Staulänge [m]					
Α												
В	4+6	31	1,032	572	95	0,17	7					
С	7+8	294	1,043	1727	95	0,61	7					

Beurteilung einer Einmündung mit Vorfahrtsregelung innerorts

A-C /B
Knotenpunkt: Usinger Straße Dr.-Werner-Stoll-Str.

Verkehrsdaten: Datum: Bestand Analyse

Uhrzeit: Nachmittag

Verkehrsregelung: Zufahrt B:

•

Zielvorgaben: Mittlere Wartezeit $t_W = 45 s$

Qualitätsstufe: **D**

Aufschlüsselung nach Fahrzeugarten:

Knotenverkehrsstärke: 799 Fz/h

liegt vor, mit Differenzierung des Schwerverkehrs

	Kapazitäten der Einzelströme												
		Hauptströme	Grundkap.	Abminderungs-	Kapazität	Auslastungs-	staufreier						
Zufahrt	Strom	$q_{\mathbf{p},\mathbf{i}}$	G_{i}	faktor f_{f}	$C_{PE,i}$	grad x _i	Zustand						
(Rang) [Fz/h] [Pkw-E/h] [-] [Pkw-E/h] [-] P ₀													
Α	2 (1)		1800	1,000	1800	0,226							
A	3 (1)	0	1600	1,000	1600	0,006							
В	4 (3)	762	399	1,000	392	0,032							
B 6 (2) 402 735 1,000 735 0,029													
С	7 (2)	406	810	1,000	810	0,015	0,982						
	8 (1)		1800	1,000	1800	0,197							

			Qualität	der Einze	el- und N	/lischstr	öme				
		Fahrzeuge	Faktoren	Kapazität	Kapazität	Auslastungs-	Kapazitäts-	mittlere	Qualitäts-		
Zufahrt	Strom	$q_{\text{Fz},i}$	$f_{PE,i}$	$C_{PE,i}$	$C_{\rm i}$	grad x _i	reserve R _i	Wartezeit w	stufe		
		[Fz/h]	[-]	[Pkw-E/h]	[Fz/h]	[-]	[Fz/h]	[s]	QSV		
۸	2	397	1,024	1800	1758	0,226	1361	0,0	Α		
A	A 3 9 1,000 1600 1600 0,006 1591 0,0										
В	4	12	1,042	392	376	0,032	364	9,9	Α		
Ь	6	21	1,000	735	735	0,029	714	5,0	Α		
С	7	12	1,000	810	810	0,015	798	4,5	Α		
C	8	348	1,017	1800	1769	0,197	1421	0,0	Α		
Α	2+3	406	1,023	1795	1754	0,231	1348	0,0	Α		
В	4+6	33	1,015	554	545	0,061	512	7,0	Α		
С	7+8	360	1,017	1800	1770	0,203	1410	2,6	Α		
	erreichbare Qualitätsstufe QSV _{FZ.ges}										

	Stauraumbemessung - Abbiegeströme											
Zufahrt	Strom	Fahrzeuge q _{Fz,i} [Fz/h]	Faktoren f _{PE,i} [-]	Kapazität C _i [Fz/h]	S [%]	N _s [Fz]	Staulänge [m]					
А		[1 2/11]	[-]	[12/11]	[70]	[1 2]	[11]					
В	4+6	33	1,015	545	95	0,19	7					
С	7+8	360	1,017	1770	95	0,76	7					

Anlage 2: Ergebnisse der Leistungsfähigkeitsberechnungen für die untersuchten Knotenpunkte, Bauabschnitt 1 - Prognose

Anlage 2.1: Usinger Straße (B 275) / Hasselhecker Straße

Anlage 2.2: Usinger Straße (B 275) / Dr.-Werner-Stoll-Straße

Beurteilung einer Kreuzung mit Vorfahrtsregelung innerorts Zufahrt D A-C /B-D Knotenpunkt: Usinger Straße Hasselhecker Str./Lekkerke Datum: Prognose Planung Verkehrsdaten: Uhrzeit: Vormittag Verkehrsregelung: Zufahrt B: Zufahrt D: Mittlere Wartezeit $t_W = 45 s$ Zielvorgaben: Knotenverkehrsstärke: 927 Fz/h Qualitätsstufe: D

Aufschlüsselung nach Fahrzeugarten:

liegt vor, mit Differenzierung des Schwerverkehrs

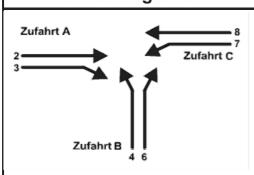
			Kapazit	äten der	Einzelst	röme		
		Hauptströme	Grundkap.	Abminderungs-	Kapazität	Auslastungs-	staufreier	staufreier
Zufahrt	Strom	$q_{p,i}$	$G_{\mathbf{i}}$	faktor f _f	$C_{PE,i}$	grad x _i	Zustand	Zustand
	(Rang)	[Fz/h]	[Pkw-E/h]	[-]	[Pkw-E/h]	[-]	p_0	p _x bzw. p _z
	1 (2)	215	1006	1,000	1006	0,004	0,995	0,842
А	2 (1)		1800	1,000	1800	0,183	1,000	
	3 (1)	0	1600	1,000	1600	0,092	1,000	
	4 (4)	729	373	1,000	294	0,134		
В	5 (3)	710	368	1,000	310	0,045	0,955	0,810
	6 (2)	395	598	1,000	598	0,112	0,888	
	7 (2)	468	755	1,000	755	0,134	0,847	0,842
С	8 (1)		1800	1,000	1800	0,108	1,000	
	9 (1)	0	1600	1,000	1600	0,017	1,000	
	10 (4)	697	436	1,000	313	0,010		
D	11 (3)	770	370	1,000	312	0,061	0,939	0,799
	12 (2)	202	937	1,000	937	0,014	0,986	

			Qualitä	t der Ein	zel- und	Mischstr	öme				
		Fahrzeuge	Faktoren	Kapazität	Kapazität	Auslastungs-	Kapazitäts-	mittlere	Qualitäts-		
Zufahrt	Strom	$q_{\text{Fz},i}$	$f_{PE,i}$	$C_{PE,i}$	C _i	grad x _i	reserve R _i	Wartezeit w	stufe		
		[Fz/h]	[-]	[Pkw-E/h]	[Fz/h]	[-]	[Fz/h]	[s]	QSV		
	1	4	1,000	1006	1006	0,004	1002	3,6	Α		
Α	2	322	1,022	1800	1762	0,183	1440	0,0	Α		
	3 146 1,007 1600 1589 0,092 1443 0,0										
	4 38 1,039 294 283 0,134 245 14,7										
В	5	14	1,000	310	310	0,045	296	12,2	В		
	6	57	1,175	598	509	0,112	452	8,0	Α		
	7	96	1,052	755	717	0,134	621	5,8	Α		
С	8	189	1,026	1800	1754	0,108	1565	0,0	Α		
	9	26	1,038	1600	1541	0,017	1515	0,0	Α		
	10	3	1,000	313	313	0,010	310	11,6	В		
D	11	19	1,000	312	312	0,061	293	12,3	В		
	12	13	1,000	937	937	0,014	924	3,9	Α		
Α	1+2+3	472	1,017	1800	1770	0,267	1298	2,8	Α		
В	4+5+6	109	1,106	637	576	0,189	467	7,7	Α		
С	7+8+9	311	1,035	1800	1739	0,179	1428	2,5	Α		
D	10+11+12	35	1,000	415	415	0,084	380	9,5	Α		
	·		erreic	hbare Qualität	sstufe QSV _{FZ,}	ges			В		

	Stauraumbemessung - Abbiegeströme											
		Fahrzeuge	Faktoren	Kapazität								
Zufahrt	Strom	$q_{Fz,i}$	$f_{PE,i}$	C _i	S	Ns	Staulänge					
		[Fz/h]	[-]	[Fz/h]	[%]	[Fz]	[m]					
۸	1+2+3	472	1,017	1770	95	1,09	13					
А												
В	4+5+6	109	1,106	576	95	0,70	7					
В												
С	7+8+9	311	1,035	1739	95	0,65	7					
D	10+11+12	35	1	415	95	0,28	6					
J												

Beurteilung einer Kreuzung mit Vorfahrtsregelung innerorts Zufahrt D A-C /B-D Knotenpunkt: Usinger Straße Hasselhecker Str./Lekkerke Datum: Prognose Planung Verkehrsdaten: Uhrzeit: Nachmittag Verkehrsregelung: Zufahrt B: Zufahrt D: Mittlere Wartezeit $t_W = 45 s$ Zielvorgaben: Knotenverkehrsstärke: 1038 Fz/h Qualitätsstufe: D

Aufschlüsselung nach Fahrzeugarten:


liegt vor, mit Differenzierung des Schwerverkehrs

			Kapazit	täten der	Einzelst	röme		
		Hauptströme	Grundkap.	Abminderungs-	Kapazität	Auslastungs-	staufreier	staufreier
Zufahrt	Strom	$q_{p,i}$	G_{i}	faktor $f_{\rm f}$	$C_{PE,i}$	grad x _i	Zustand	Zustand
	(Rang)	[Fz/h]	[Pkw-E/h]	[-]	[Pkw-E/h]	[-]	p_0	p _x bzw. p _z
	1 (2)	287	927	1,000	927	0,004	0,995	0,864
Α	2 (1)		1800	1,000	1800	0,167	1,000	
	3 (1)	0	1600	1,000	1600	0,047	1,000	
	4 (4)	711	382	1,000	321	0,363		
В	5 (3)	711	367	1,000	317	0,088	0,912	0,797
	6 (2)	331	642	1,000	642	0,199	0,801	
	7 (2)	368	846	1,000	846	0,110	0,869	0,864
С	8 (1)		1800	1,000	1800	0,139	1,000	
	9 (1)	0	1600	1,000	1600	0,024	1,000	
	10 (4)	692	439	1,000	280	0,007		
D	11 (3)	729	393	1,000	339	0,015	0,985	0,853
	12 (2)	268	865	1,000	865	0,016	0,984	

			Qualitä	t der Ein	zel- und	Mischstr	öme		
		Fahrzeuge	Faktoren	Kapazität	Kapazität	Auslastungs-	Kapazitäts-	mittlere	Qualitäts-
Zufahrt	Strom	$q_{Fz,i}$	$f_{PE,i}$	$C_{PE,i}$	C _i	grad x _i	reserve R _i	Wartezeit w	stufe
		[Fz/h]	[-]	[Pkw-E/h]	[Fz/h]	[-]	[Fz/h]	[s]	QSV
	1	4	1,000	927	927	0,004	923	3,9	Α
Α	2	294	1,022	1800	1761	0,167	1467	0,0	Α
	3	74	1,020	1600	1568	0,047	1494	0,0	Α
	4	116	1,004	321	319	0,363	203	17,7	В
В	5	28	1,000	317	317	0,088	289	12,5	В
	6	125	1,020	642	629	0,199	504	7,1	Α
	7	89	1,045	846	809	0,110	720	5,0	Α
С	8	248	1,006	1800	1789	0,139	1541	0,0	Α
	9	39	1,000	1600	1600	0,024	1561	0,0	Α
	10	2	1,000	280	280	0,007	278	12,9	В
D	11	5	1,000	339	339	0,015	334	10,8	В
	12	14	1,000	865	865	0,016	851	4,2	Α
Α	1+2+3	372	1,022	1800	1762	0,211	1390	2,6	Α
В	4+5+6	269	1,011	625	618	0,435	349	10,3	В
С	7+8+9	376	1,015	1800	1774	0,212	1398	2,6	Α
D	10+11+12	21	1,000	552	552	0,038	531	6,8	Α
	·		erreic	hbare Qualität	sstufe QSV _{FZ}	ges			В

	Stauraumbemessung - Abbiegeströme									
		Fahrzeuge	Faktoren	Kapazität						
Zufahrt	Strom	$q_{\text{Fz},i}$	$f_{PE,i}$	C_{i}	S	N _s	Staulänge			
		[Fz/h]	[-]	[Fz/h]	[%]	[Fz]	[m]			
Α	1+2+3	372	1,022	1762	95	0,80	7			
^										
В	4+5+6	269	1,011	618	95	2,28	19			
Ь										
С	7+8+9	376	1,015	1774	95	0,80	7			
D	10+11+12	21	1	553	95	0,12	6			

Beurteilung einer Einmündung mit Vorfahrtsregelung innerorts

A-C /B
Knotenpunkt: Usinger Straße Dr.-Werner-Stoll-Str.

Verkehrsdaten: Datum: Prognose Planung

Uhrzeit: Vormittag

Verkehrsregelung: Zufahrt B:

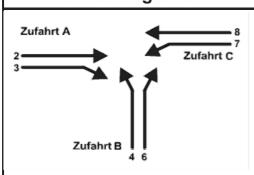
 $oldsymbol{
abla}$

Zielvorgaben: Mittlere Wartezeit $t_W = 45 s$

Qualitätsstufe: **D**

Aufschlüsselung nach Fahrzeugarten:

Knotenverkehrsstärke: 749 Fz/h


liegt vor, mit Differenzierung des Schwerverkehrs

	Kapazitäten der Einzelströme										
		Hauptströme	Grundkap.	Abminderungs-	Kapazität	Auslastungs-	staufreier				
Zufahrt	Strom	$q_{\mathbf{p},\mathbf{i}}$	G_{i}	faktor f _f	$C_{PE,i}$	grad x _i	Zustand				
	(Rang)	[Fz/h]	[Pkw-E/h]	[-]	[Pkw-E/h]	[-]	p_0				
Α	2 (1)		1800	1,000	1800	0,215					
A	3 (1)	0	1600	1,000	1600	0,011					
В	4 (3)	692	439	1,000	429	0,049					
Б	6 (2)	381	754	1,000	754	0,038					
С	7 (2)	389	826	1,000	826	0,018	0,978				
C	8 (1)		1800	1,000	1800	0,172					

	Qualität der Einzel- und Mischströme											
		Fahrzeuge	Faktoren	Kapazität	Kapazität	Auslastungs-	Kapazitäts-	mittlere	Qualitäts-			
Zufahrt	Strom	$q_{Fz,i}$	$f_{PE,i}$	$C_{PE,i}$	$C_{\rm i}$	grad x _i	reserve R _i	Wartezeit w	stufe			
		[Fz/h]	[-]	[Pkw-E/h]	[Fz/h]	[-]	[Fz/h]	[s]	QSV			
Α	2	372	1,042	1800	1728	0,215	1356	0,0	Α			
A	3	17	1,059	1600	1511	0,011	1494	0,0	Α			
В	4	21	1,000	429	429	0,049	408	8,8	Α			
Ь	6	28	1,036	754	728	0,038	700	5,1	Α			
С	7	15	1,000	826	826	0,018	811	4,4	Α			
C	8	296	1,044	1800	1724	0,172	1428	0,0	Α			
Α	2+3	389	1,042	1790	1717	0,227	1328	0,0	Α			
В	4+6	49	1,020	572	561	0,087	512	7,0	Α			
С	7+8	311	1,042	1800	1728	0,180	1417	2,5	Α			
	erreichbare Qualitätsstufe QSV _{FZ.ges}											

	Stauraumbemessung - Abbiegeströme										
Zufahrt	Strom	Fahrzeuge q _{Fz,i}	Faktoren f _{PE,i}	Kapazität C _i	S [9/1	N _s	Staulänge				
А		[Fz/h]	[-]	[Fz/h]	[%]	[Fz]	[m]				
В	4+6	49	1,02	561	95	0,29	7				
С	7+8	311	1,042	1728	95	0,66	7				

Beurteilung einer Einmündung mit Vorfahrtsregelung innerorts

A-C /B
Knotenpunkt: Usinger Straße Dr.-Werner-Stoll-Str.

Verkehrsdaten: Datum: Prognose Planung

Uhrzeit: Nachmittag

Verkehrsregelung: Zufahrt B:

•

Zielvorgaben: Mittlere Wartezeit $t_W = 45 s$

Qualitätsstufe: **D**

Aufschlüsselung nach Fahrzeugarten:

Knotenverkehrsstärke: 870 Fz/h

liegt vor, mit Differenzierung des Schwerverkehrs

	Kapazitäten der Einzelströme										
		Hauptströme	Grundkap.	Abminderungs-	Kapazität	Auslastungs-	staufreier				
Zufahrt	Strom	$q_{\mathbf{p},\mathbf{i}}$	G_{i}	faktor f_{f}	$C_{PE,i}$	grad x _i	Zustand				
	(Rang)	[Fz/h]	[Pkw-E/h]	[-]	[Pkw-E/h]	[-]	p_0				
Α	2 (1)		1800	1,000	1800	0,237					
_ A	3 (1)	0	1600	1,000	1600	0,009					
В	4 (3)	815	371	1,000	356	0,052					
Б	6 (2)	425	714	1,000	714	0,042					
С	7 (2)	432	786	1,000	786	0,032	0,960				
C	8 (1)		1800	1,000	1800	0,206					

	Qualität der Einzel- und Mischströme											
		Fahrzeuge	Faktoren	Kapazität	Kapazität	Auslastungs-	Kapazitäts-	mittlere	Qualitäts-			
Zufahrt	Strom	$q_{Fz,i}$	$f_{PE,i}$	$C_{PE,i}$	C_{i}	grad x _i	reserve R _i	Wartezeit w	stufe			
		[Fz/h]	[-]	[Pkw-E/h]	[Fz/h]	[-]	[Fz/h]	[s]	QSV			
А	2	417	1,024	1800	1758	0,237	1341	0,0	Α			
A	3	15	1,000	1600	1600	0,009	1585	0,0	Α			
В	4	18	1,028	356	347	0,052	329	11,0	В			
В	6	30	1,000	714	714	0,042	684	5,3	Α			
С	7	25	1,000	786	786	0,032	761	4,7	Α			
C	8	365	1,016	1800	1771	0,206	1406	0,0	Α			
Α	2+3	432	1,023	1792	1752	0,247	1320	0,0	Α			
В	4+6	48	1,010	516	511	0,094	463	7,8	Α			
С	7+8	390	1,015	1800	1773	0,220	1383	2,6	Α			
	erreichbare Qualitätsstufe QSV _{FZ,ges}											

	Stauraumbemessung - Abbiegeströme										
Zufahrt	Strom	Fahrzeuge q _{Fz,i}	Faktoren f _{PE,i}	Kapazität C _i	S	N _s	Staulänge				
		[Fz/h]	[-]	[Fz/h]	[%]	[Fz]	[m]				
Α											
В	4+6	48	1,01	511	95	0,31	7				
С	7+8	390	1,015	1773	95	0,84	7				

Anlage 3: Ergebnisse der Leistungsfähigkeitsberechnungen für die untersuchten Knotenpunkte, Bauabschnitt 2 - Prognose

Anlage 3.1: Usinger Straße (B 275) / Hasselhecker Straße

Anlage 3.2: Usinger Straße (B 275) / Dr.-Werner-Stoll-Straße

Beurteilung einer Kreuzung mit Vorfahrtsregelung innerorts Zufahrt D A-C Knotenpunkt: Usinger Straße Hasselhecker Str./Lekkerke Datum: Prognose Planung Verkehrsdaten: Uhrzeit: Vormittag Verkehrsregelung: Zufahrt B: Zufahrt D: Mittlere Wartezeit $t_W = 45 s$ Zielvorgaben: Knotenverkehrsstärke: 991 Fz/h Qualitätsstufe: D

Aufschlüsselung nach Fahrzeugarten:

liegt vor, mit Differenzierung des Schwerverkehrs

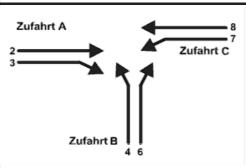
			Kapazit	täten der	Einzelst	röme		
		Hauptströme	Grundkap.	Abminderungs-	Kapazität	Auslastungs-	staufreier	staufreier
Zufahrt	Strom	$q_{p,i}$	G_{i}	faktor f _f	$C_{PE,i}$	grad x _i	Zustand	Zustand
	(Rang)	[Fz/h]	[Pkw-E/h]	[-]	[Pkw-E/h]	[-]	p_0	p _x bzw. p _z
	1 (2)	223	997	1,000	997	0,004	0,994	0,828
Α	2 (1)		1800	1,000	1800	0,183	1,000	
	3 (1)	0	1600	1,000	1600	0,095	1,000	
	4 (4)	749	364	1,000	281	0,194		
В	5 (3)	730	358	1,000	297	0,047	0,953	0,796
	6 (2)	399	596	1,000	596	0,158	0,842	
	7 (2)	474	749	1,000	749	0,145	0,833	0,828
С	8 (1)		1800	1,000	1800	0,112	1,000	
	9 (1)	0	1600	1,000	1600	0,017	1,000	
	10 (4)	717	424	1,000	284	0,011		
D	11 (3)	792	359	1,000	298	0,064	0,936	0,784
	12 (2)	210	928	1,000	928	0,014	0,986	

			Qualitä	t der Ein	zel- und	Mischstr	öme		
		Fahrzeuge	Faktoren	Kapazität	Kapazität	Auslastungs-	Kapazitäts-	mittlere	Qualitäts-
Zufahrt	Strom	$q_{Fz,i}$	$f_{PE,i}$	$C_{PE,i}$	C _i	grad x _i	reserve R_i	Wartezeit w	stufe
		[Fz/h]	[-]	[Pkw-E/h]	[Fz/h]	[-]	[Fz/h]	[s]	QSV
	1	4	1,000	997	997	0,004	993	3,6	Α
Α	2	323	1,022	1800	1762	0,183	1439	0,0	Α
	3	151	1,010	1600	1584	0,095	1433	0,0	Α
	4	53	1,028	281	274	0,194	221	16,3	В
В	5	14	1,000	297	297	0,047	283	12,7	В
В	6	84	1,119	596	533	0,158	449	8,0	Α
	7	104	1,048	749	715	0,145	611	5,9	Α
С	8	197	1,025	1800	1755	0,112	1558	0,0	Α
	9	26	1,038	1600	1541	0,017	1515	0,0	Α
	10	3	1,000	284	284	0,011	281	12,8	В
D	11	19	1,000	298	298	0,064	279	12,9	В
	12	13	1,000	928	928	0,014	915	3,9	Α
Α	1+2+3	478	1,018	1800	1769	0,270	1291	2,8	Α
В	4+5+6	151	1,076	634	589	0,256	438	8,2	Α
С	7+8+9	327	1,034	1800	1741	0,188	1414	2,5	Α
D	10+11+12	35	1,000	396	396	0,088	361	10,0	Α
erreichbare Qualitätsstufe QSV _{FZ,ges}									В

	Stauraumbemessung - Abbiegeströme										
		Fahrzeuge	Faktoren	Kapazität							
Zufahrt	Strom	$q_{Fz,i}$	$f_{PE,i}$	C_{i}	S	Ns	Staulänge				
		[Fz/h]	[-]	[Fz/h]	[%]	[Fz]	[m]				
Α	1+2+3	478	1,018	1769	95	1,11	13				
^			_								
В	4+5+6	151	1,076	589	95	1,03	13				
ь			_								
С	7+8+9	327	1,034	1741	95	0,69	7				
C			_								
D	10+11+12	35	1	396	95	0,29	6				

Beurteilung einer Kreuzung mit Vorfahrtsregelung innerorts Zufahrt D A-C /B-D Knotenpunkt: Usinger Straße Hasselhecker Str./Lekkerke Datum: Prognose Planung Verkehrsdaten: Uhrzeit: Nachmittag Verkehrsregelung: Zufahrt B: Zufahrt D: Mittlere Wartezeit $t_W = 45 s$ Zielvorgaben: Knotenverkehrsstärke: 1142 Fz/h Qualitätsstufe: D

Aufschlüsselung nach Fahrzeugarten:


liegt vor, mit Differenzierung des Schwerverkehrs

			Kapazit	täten der	Einzelst	röme		
		Hauptströme	Grundkap.	Abminderungs-	Kapazität	Auslastungs-	staufreier	staufreier
Zufahrt	Strom	$q_{p,i}$	G_{i}	faktor f _f	$C_{PE,i}$	grad x _i	Zustand	Zustand
	(Rang)	[Fz/h]	[Pkw-E/h]	[-]	[Pkw-E/h]	[-]	p_0	p _x bzw. p _z
	1 (2)	290	924	1,000	924	0,004	0,994	0,808
Α	2 (1)		1800	1,000	1800	0,171	1,000	
	3 (1)	0	1600	1,000	1600	0,060	1,000	
	4 (4)	766	356	1,000	279	0,469		
В	5 (3)	766	341	1,000	276	0,102	0,898	0,740
	6 (2)	348	630	1,000	630	0,243	0,757	
	7 (2)	395	820	1,000	820	0,157	0,812	0,808
С	8 (1)		1800	1,000	1800	0,140	1,000	
	9 (1)	0	1600	1,000	1600	0,024	1,000	
	10 (4)	747	407	1,000	228	0,009		
D	11 (3)	794	358	1,000	290	0,017	0,983	0,797
	12 (2)	271	862	1,000	862	0,016	0,984	

			Qualitä	t der Ein	zel- und	Mischstr	öme		
		Fahrzeuge	Faktoren	Kapazität	Kapazität	Auslastungs-	Kapazitäts-	mittlere	Qualitäts-
Zufahrt	Strom	$q_{\text{Fz},i}$	$f_{PE,i}$	$C_{PE,i}$	C _i	grad x _i	reserve R _i	Wartezeit w	stufe
		[Fz/h]	[-]	[Pkw-E/h]	[Fz/h]	[-]	[Fz/h]	[s]	QSV
	1	4	1,000	924	924	0,004	920	3,9	Α
Α	2	301	1,022	1800	1762	0,171	1461	0,0	Α
	3	94	1,016	1600	1575	0,060	1481	0,0	Α
	4	130	1,008	279	277	0,469	147	24,4	С
В	5	28	1,000	276	276	0,102	248	14,5	В
_	6	150	1,020	630	618	0,243	468	7,7	Α
	7	124	1,036	820	791	0,157	667	5,4	Α
С	8	251	1,006	1800	1789	0,140	1538	0,0	Α
	9	39	1,000	1600	1600	0,024	1561	0,0	Α
	10	2	1,000	228	228	0,009	226	15,9	В
D	11	5	1,000	290	290	0,017	285	12,7	В
	12	14	1,000	862	862	0,016	848	4,2	Α
Α	1+2+3	399	1,020	1800	1765	0,226	1366	2,6	Α
В	4+5+6	308	1,013	569	561	0,549	253	14,1	В
С	7+8+9	414	1,014	1800	1774	0,233	1360	2,6	Α
D	10+11+12	21	1,000	497	497	0,042	476	7,6	Α
			erreic	hbare Qualität	sstufe QSV _{FZ,}	ges			С

	Stauraumbemessung - Abbiegeströme										
		Fahrzeuge	Faktoren	Kapazität							
Zufahrt	Strom	$q_{\text{Fz},i}$	$f_{PE,i}$	C_{i}	S	Ns	Staulänge				
		[Fz/h]	[-]	[Fz/h]	[%]	[Fz]	[m]				
Α	1+2+3	399	1,02	1765	95	0,87	7				
_ ^											
В	4+5+6	308	1,013	561	95	3,55	25				
В											
С	7+8+9	414	1,014	1774	95	0,91	7				
D	10+11+12	21	1	497	95	0,13	6				

Beurteilung einer Einmündung mit Vorfahrtsregelung innerorts

A-C /B
Knotenpunkt: Usinger Straße Dr.-Werner-Stoll-Str.

Verkehrsdaten: Datum: Prognose Planung

Uhrzeit: Vormittag

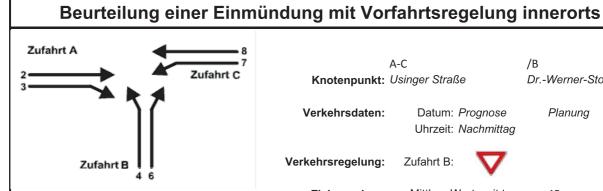
Verkehrsregelung: Zufahrt B:

 ∇

Zielvorgaben: Mittlere Wartezeit $t_W = 45 s$

Qualitätsstufe: **D**

Aufschlüsselung nach Fahrzeugarten:


Knotenverkehrsstärke: 809 Fz/h

liegt vor, mit Differenzierung des Schwerverkehrs

	Kapazitäten der Einzelströme											
		Hauptströme	Grundkap.	Abminderungs-	Kapazität	Auslastungs-	staufreier					
Zufahrt	Strom	$q_{\mathbf{p},\mathbf{i}}$	G_{i}	faktor f_{f}	$C_{PE,i}$	grad x _i	Zustand					
	(Rang)	[Fz/h]	[Pkw-E/h]	[-]	[Pkw-E/h]	[-]	p_0					
Α	2 (1)		1800	1,000	1800	0,230						
_ A	3 (1)	0	1600	1,000	1600	0,012						
В	4 (3)	727	418	1,000	406	0,071						
Б	6 (2)	408	729	1,000	729	0,062						
С	7 (2)	417	800	1,000	800	0,023	0,972					
	8 (1)		1800	1,000	1800	0,175						

			Qualität	der Einze	el- und N	/lischstr	ome			
		Fahrzeuge	Faktoren	Kapazität	Kapazität	Auslastungs-	Kapazitäts-	mittlere	Qualitäts-	
Zufahrt	Strom	$q_{Fz,i}$	$f_{PE,i}$	$C_{PE,i}$	C_{i}	grad x _i	reserve R_i	Wartezeit w	stufe	
		[Fz/h]	[-]	[Pkw-E/h]	[Fz/h]	[-]	[Fz/h]	[s]	QSV	
Α	2	399	1,039	1800	1733	0,230	1334	0,0	Α	
A	3	18	1,056	1600	1516	0,012	1498	0,0	Α	
В	4	29	1,000	406	406	0,071	377	9,5	Α	
В	6	44	1,034	729	705	0,062	661	5,4	Α	
С	7	18	1,028	800	778	0,023	760	4,7	Α	
C	8	301	1,045	1800	1723	0,175	1422	0,0	Α	
Α	2+3	417	1,040	1790	1722	0,242	1305	0,0	Α	
В	4+6	73	1,021	557	546	0,134	473	7,6	Α	
С	7+8	319	1,044	1800	1724	0,185	1405	2,6	Α	
	erreichbare Qualitätsstufe QSV _{FZ,qes}									

	Stauraumbemessung - Abbiegeströme										
Zufahrt	Strom	Fahrzeuge q _{Fz,i}	Faktoren f _{PE,i}	Kapazität C _i	S	N _s	Staulänge				
Α		[Fz/h]	[-]	[Fz/h]	[%]	[Fz]	[m]				
	4+6	73	1,021	546	95	0,46	7				
В		2.12		.=		0.00	_				
С	7+8	319	1,044	1724	95	0,68	7				

A-C Knotenpunkt: Usinger Straße Dr.-Werner-Stoll-Str.

Verkehrsdaten: Datum: Prognose Planung

Uhrzeit: Nachmittag

Verkehrsregelung: Zufahrt B:

Zielvorgaben: Mittlere Wartezeit t_W = 45 s

> Qualitätsstufe: D

Aufschlüsselung nach Fahrzeugarten:

Knotenverkehrsstärke: 966 Fz/h

liegt vor, mit Differenzierung des Schwerverkehrs

	Kapazitäten der Einzelströme										
		Hauptströme	Grundkap.	Abminderungs-	Kapazität	Auslastungs-	staufreier				
Zufahrt	Strom	$q_{\mathbf{p},\mathbf{i}}$	G_{i}	$faktor\ f_{f}$	$C_{PE,i}$	grad x _i	Zustand				
	(Rang)	[Fz/h]	[Pkw-E/h]	[-]	[Pkw-E/h]	[-]	p_0				
Α	2 (1)		1800	1,000	1800	0,251					
A	3 (1)	0	1600	1,000	1600	0,014					
В	4 (3)	894	333	1,000	310	0,072					
Б	6 (2)	454	689	1,000	689	0,057					
С	7 (2)	465	757	1,000	757	0,053	0,931				
	8 (1)		1800	1,000	1800	0,226					

			Qualität	der Einze	el- und N	/lischstr	öme			
		Fahrzeuge	Faktoren	Kapazität	Kapazität	Auslastungs-	Kapazitäts-	mittlere	Qualitäts-	
Zufahrt	Strom	$q_{Fz,i}$	$f_{PE,i}$	$C_{PE,i}$	$C_{\rm i}$	grad x _i	reserve R _i	Wartezeit w	stufe	
		[Fz/h]	[-]	[Pkw-E/h]	[Fz/h]	[-]	[Fz/h]	[s]	QSV	
Α	2	442	1,024	1800	1758	0,251	1316	0,0	Α	
A	3	23	1,000	1600	1600	0,014	1577	0,0	Α	
В	4	22	1,023	310	303	0,072	281	12,8	В	
В	6	39	1,013	689	681	0,057	642	5,6	Α	
С	7	40	1,013	757	748	0,053	708	5,1	Α	
C	8	400	1,016	1800	1771	0,226	1371	0,0	Α	
Α	2+3	465	1,023	1789	1750	0,266	1285	0,0	Α	
В	4+6	61	1,016	478	470	0,130	409	8,8	Α	
С	7+8	440	1,016	1800	1772	0,248	1332	2,7	Α	
	erreichbare Qualitätsstufe QSV _{FZ.ges}									

	Stauraumbemessung - Abbiegeströme										
		Fahrzeuge	Faktoren	Kapazität							
Zufahrt	Strom	$q_{Fz,i}$	$f_{PE,i}$	C_{i}	S	N _S	Staulänge				
		[Fz/h]	[-]	[Fz/h]	[%]	[Fz]	[m]				
Α											
В	4+6	61	1,016	470	95	0,45	7				
В											
С	7+8	440	1,016	1772	95	0,99	7				

Anlage 4: Ergebnisse der Leistungsfähigkeitsberechnungen für die untersuchten Knotenpunkte, Bauabschnitt 3 - Prognose

Anlage 4.1: Usinger Straße (B 275) / Hasselhecker Straße

Anlage 4.2: Usinger Straße (B 275) / Dr.-Werner-Stoll-Straße

Beurteilung einer Kreuzung mit Vorfahrtsregelung innerorts Zufahrt D A-C /B-D Knotenpunkt: Usinger Straße Hasselhecker Str./Lekkerke Datum: Prognose Planung Verkehrsdaten: Uhrzeit: Vormittag Verkehrsregelung: Zufahrt B: Zufahrt D: Mittlere Wartezeit $t_W = 45 s$ Zielvorgaben: Knotenverkehrsstärke: 1029 Fz/h Qualitätsstufe: D

Aufschlüsselung nach Fahrzeugarten:

liegt vor, mit Differenzierung des Schwerverkehrs

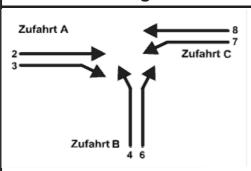
			Kapazit	täten der	Einzelst	röme		
		Hauptströme	Grundkap.	Abminderungs-	Kapazität	Auslastungs-	staufreier	staufreier
Zufahrt	Strom	$q_{p,i}$	G_{i}	faktor f _f	$C_{PE,i}$	grad x _i	Zustand	Zustand
	(Rang)	[Fz/h]	[Pkw-E/h]	[-]	[Pkw-E/h]	[-]	p_0	p _x bzw. p _z
	1 (2)	232	987	1,000	987	0,004	0,994	0,821
Α	2 (1)		1800	1,000	1800	0,184	1,000	
	3 (1)	0	1600	1,000	1600	0,096	1,000	
	4 (4)	763	357	1,000	274	0,230		
В	5 (3)	744	351	1,000	289	0,049	0,951	0,788
	6 (2)	401	595	1,000	595	0,183	0,817	
	7 (2)	477	747	1,000	747	0,151	0,826	0,821
С	8 (1)		1800	1,000	1800	0,117	1,000	
	9 (1)	0	1600	1,000	1600	0,017	1,000	
	10 (4)	731	416	1,000	268	0,011		
D	11 (3)	807	352	1,000	289	ססט,ט	0,934	0,776
	12 (2)	219	918	1,000	918	0,014	0,986	

			Qualitä	t der Ein	zel- und	Mischstr	öme		
		Fahrzeuge	Faktoren	Kapazität	Kapazität	Auslastungs-	Kapazitäts-	mittlere	Qualitäts-
Zufahrt	Strom	$q_{Fz,i}$	$f_{PE,i}$	$C_{PE,i}$	C _i	grad x _i	reserve R _i	Wartezeit w	stufe
		[Fz/h]	[-]	[Pkw-E/h]	[Fz/h]	[-]	[Fz/h]	[s]	QSV
	1	4	1,000	987	987	0,004	983	3,7	Α
Α	2	325	1,022	1800	1762	0,184	1437	0,0	Α
	3	152	1,010	1600	1584	0,096	1432	0,0	Α
	4	61	1,033	274	265	0,230	204	17,6	В
В	5	14	1,000	289	289	0,049	275	13,1	В
	6	99	1,101	595	540	0,183	441	8,2	Α
	7	107	1,051	747	710	0,151	603	6,0	Α
С	8	206	1,024	1800	1757	0,117	1551	0,0	Α
	9	26	1,038	1600	1541	0,017	1515	0,0	Α
	10	3	1,000	268	268	0,011	265	13,6	В
D	11	19	1,000	289	289	0,066	270	13,3	В
	12	13	1,000	918	918	0,014	905	4,0	Α
Α	1+2+3	481	1,018	1800	1769	0,272	1288	2,8	Α
В	4+5+6	174	1,069	626	586	0,297	412	8,7	Α
С	7+8+9	339	1,034	1800	1741	0,195	1402	2,6	Α
D	10+11+12	35	1,000	384	384	0,091	349	10,3	В
			erreic	hbare Qualität	sstufe QSV _{FZ,}	ges		·	В

		Staurau	mbemes	sung - A	bbiegest	röme	
		Fahrzeuge	Faktoren	Kapazität			
Zufahrt	Strom	$q_{\text{Fz},i}$	$f_{PE,i}$	C_{i}	S	Ns	Staulänge
		[Fz/h]	[-]	[Fz/h]	[%]	[Fz]	[m]
Λ	1+2+3	481	1,018	1769	95	1,12	13
А							
В	4+5+6	174	1,069	586	95	1,26	13
В							
С	7+8+9	339	1,034	1741	95	0,72	7
C							
D	10+11+12	35	1	384	95	0,30	6

Beurteilung einer Kreuzung mit Vorfahrtsregelung innerorts Zufahrt D A-C Knotenpunkt: Usinger Straße Hasselhecker Str./Lekkerke Datum: Bestand Verkehrsdaten: Analyse Uhrzeit: Nachmittag Verkehrsregelung: Zufahrt B: Zufahrt D: Mittlere Wartezeit $t_W = 45 s$ Zielvorgaben: Knotenverkehrsstärke: 1194 Fz/h Qualitätsstufe: D

Aufschlüsselung nach Fahrzeugarten:


liegt vor, mit Differenzierung des Schwerverkehrs

			Kapazit	täten der	Einzelst	röme		
		Hauptströme	Grundkap.	Abminderungs-	Kapazität	Auslastungs-	staufreier	staufreier
Zufahrt	Strom	$q_{p,i}$	G_{i}	faktor f _f	$C_{PE,i}$	grad x _i	Zustand	Zustand
	(Rang)	[Fz/h]	[Pkw-E/h]	[-]	[Pkw-E/h]	[-]	p_0	p _x bzw. p _z
	1 (2)	295	919	1,000	919	0,004	0,994	0,780
Α	2 (1)		1800	1,000	1800	0,176	1,000	
	3 (1)	0	1600	1,000	1600	0,065	1,000	
	4 (4)	800	341	1,000	258	0,528		
В	5 (3)	800	326	1,000	254	0,110	0,890	0,711
	6 (2)	361	621	1,000	621	0,262	0,738	
	7 (2)	412	804	1,000	804	0,180	0,784	0,780
С	8 (1)		1800	1,000	1800	0,143	1,000	
	9 (1)	0	1600	1,000	1600	0,024	1,000	
	10 (4)	781	389	1,000	204	0,010		
D	11 (3)	832	340	1,000	265	0,019	0,981	0,768
	12 (2)	276	857	1,000	857	0,016	0,984	

			Qualitä	t der Ein	zel- und	Mischstr	öme		
		Fahrzeuge	Faktoren	Kapazität	Kapazität	Auslastungs-	Kapazitäts-	mittlere	Qualitäts-
Zufahrt	Strom	$q_{\text{Fz},i}$	$f_{PE,i}$	$C_{PE,i}$	C _i	grad x _i	reserve R_i	Wartezeit w	stufe
		[Fz/h]	[-]	[Pkw-E/h]	[Fz/h]	[-]	[Fz/h]	[s]	QSV
	1	4	1,000	919	919	0,004	915	3,9	Α
Α	2	310	1,021	1800	1763	0,176	1453	0,0	A
	3	102	1,020	1600	1569	0,065	1467	0,0	Α
	4	135	1,007	258	256	0,528	121	29,5	С
В	5	28	1,000	254	254	0,110	226	15,9	В
	6	159	1,022	621	608	0,262	449	8,0	Α
	7	140	1,032	804	779	0,180	639	5,6	Α
С	8	256	1,006	1800	1790	0,143	1534	0,0	Α
	9	39	1,000	1600	1600	0,024	1561	0,0	Α
	10	2	1,000	204	204	0,010	202	17,8	В
D	11	5	1,000	265	265	0,019	260	13,8	В
	12	14	1,000	857	857	0,016	843	4,3	Α
Α	1+2+3	416	1,020	1800	1764	0,236	1348	2,7	Α
В	4+5+6	322	1,014	535	528	0,610	206	17,3	В
С	7+8+9	435	1,014	1800	1776	0,245	1341	2,7	Α
D	10+11+12	21	1,000	467	467	0,045	446	8,1	Α
			erreic	hbare Qualität	sstufe QSV _{FZ}	ges			С

	Stauraumbemessung - Abbiegeströme										
		Fahrzeuge	Faktoren	Kapazität							
Zufahrt	Strom	$q_{\text{Fz},i}$	$f_{PE,i}$	C_{i}	S	N _s	Staulänge				
		[Fz/h]	[-]	[Fz/h]	[%]	[Fz]	[m]				
Α	1+2+3	416	1,02	1764	95	0,92	7				
_ ^											
В	4+5+6	322	1,014	528	95	4,49	31				
В											
С	7+8+9	435	1,014	1776	95	0,97	7				
D	10+11+12	21	1	467	95	0,14	6				

Beurteilung einer Einmündung mit Vorfahrtsregelung innerorts

A-C /B
Knotenpunkt: Usinger Straße Dr.-Werner-Stoll-Str.

Verkehrsdaten: Datum: Prognose Planung

Uhrzeit: Vormittag

Verkehrsregelung: Zufahrt B:

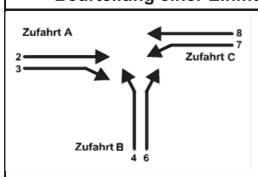
V

Zielvorgaben: Mittlere Wartezeit $t_W = 45 s$

Qualitätsstufe: **D**

Knotenverkehrsstärke: 858 Fz/h

Aufschlüsselung nach Fahrzeugarten:


liegt vor, mit Differenzierung des Schwerverkehrs

	Kapazitäten der Einzelströme											
		Hauptströme	Grundkap.	Abminderungs-	Kapazität	Auslastungs-	staufreier					
Zufahrt	Strom	$q_{\mathbf{p},\mathbf{i}}$	G_{i}	faktor f_{f}	$C_{PE,i}$	grad x _i	Zustand					
	(Rang)	[Fz/h]	[Pkw-E/h]	[-]	[Pkw-E/h]	[-]	p_0					
Α	2 (1)		1800	1,000	1800	0,239						
_ A	3 (1)	0	1600	1,000	1600	0,013						
В	4 (3)	751	405	1,000	392	0,097						
Б	6 (2)	424	715	1,000	715	0,085						
С	7 (2)	434	784	1,000	784	0,026	0,968					
	8 (1)		1800	1,000	1800	0,178						

			Qualität	der Einze	el- und N	/lischstr	öme			
		Fahrzeuge	Faktoren	Kapazität	Kapazität	Auslastungs-	Kapazitäts-	mittlere	Qualitäts-	
Zufahrt	Strom	$q_{Fz,i}$	$f_{PE,i}$	$C_{PE,i}$	C_{i}	grad x _i	reserve R _i	Wartezeit w	stufe	
		[Fz/h]	[-]	[Pkw-E/h]	[Fz/h]	[-]	[Fz/h]	[s]	QSV	
А	2	414	1,039	1800	1733	0,239	1319	0,0	Α	
A	3	20	1,050	1600	1524	0,013	1504	0,0	Α	
В	4	38	1,000	392	392	0,097	354	10,2	В	
В	6	59	1,025	715	697	0,085	638	5,6	Α	
С	7	20	1,025	784	765	0,026	745	4,8	Α	
C	8	307	1,044	1800	1724	0,178	1417	0,0	Α	
Α	2+3	434	1,039	1790	1722	0,252	1288	0,0	Α	
В	4+6	97	1,015	542	534	0,182	437	8,2	Α	
С	7+8	327	1,043	1800	1726	0,189	1399	2,6	Α	
	erreichbare Qualitätsstufe QSV _{FZ,ges}									

	Stauraumbemessung - Abbiegeströme										
Zufahrt	Strom	Fahrzeuge q _{Fz,i} [Fz/h]	Faktoren f _{PE,i} [-]	Kapazität C _i [Fz/h]	S [%]	N _s [Fz]	Staulänge [m]				
А											
В	4+6	97	1,015	534	95	0,66	7				
С	7+8	327	1,043	1726	95	0,70	7				

Beurteilung einer Einmündung mit Vorfahrtsregelung innerorts

A-C Knotenpunkt: Usinger Straße Dr.-Werner-Stoll-Str.

Verkehrsdaten: Datum: Prognose Planung

Uhrzeit: Nachmittag

Verkehrsregelung: Zufahrt B:

> Mittlere Wartezeit t_W = 45 s

Zielvorgaben: Qualitätsstufe: D

Aufschlüsselung nach Fahrzeugarten:

Knotenverkehrsstärke: 1011 Fz/h

liegt vor, mit Differenzierung des Schwerverkehrs

	Kapazitäten der Einzelströme											
		Hauptströme	Grundkap.	Abminderungs-	Kapazität	Auslastungs-	staufreier					
Zufahrt	Strom	$q_{\mathbf{p},\mathbf{i}}$	G_{i}	faktor f _f	$C_{PE,i}$	grad x _i	Zustand					
	(Rang)	[Fz/h]	[Pkw-E/h]	[-]	[Pkw-E/h]	[-]	p_0					
Α	2 (1)		1800	1,000	1800	0,251						
_ A	3 (1)	0	1600	1,000	1600	0,020						
В	4 (3)	920	322	1,000	290	0,095						
Б	6 (2)	458	686	1,000	686	0,071						
С	7 (2)	474	749	1,000	749	0,075	0,902					
	8 (1)		1800	1,000	1800	0,229						

			Qualität	der Einze	el- und N	/lischstr	öme			
		Fahrzeuge	Faktoren	Kapazität	Kapazität	Auslastungs-	Kapazitäts-	mittlere	Qualitäts-	
Zufahrt	Strom	$q_{Fz,i}$	$f_{PE,i}$	$C_{PE,i}$	C_{i}	grad x _i	reserve R _i	Wartezeit w	stufe	
		[Fz/h]	[-]	[Pkw-E/h]	[Fz/h]	[-]	[Fz/h]	[s]	QSV	
А	2	442	1,024	1800	1758	0,251	1316	0,0	Α	
A	3	32	1,000	1600	1600	0,020	1568	0,0	Α	
В	4	27	1,019	290	285	0,095	258	14,0	В	
В	6	48	1,010	686	679	0,071	631	5,7	Α	
С	7	56	1,009	749	743	0,075	687	5,2	Α	
C	8	406	1,016	1800	1772	0,229	1366	0,0	Α	
Α	2+3	474	1,022	1785	1747	0,271	1273	0,0	Α	
В	4+6	75	1,013	459	453	0,166	378	9,5	Α	
С	7+8	462	1,015	1800	1773	0,261	1311	2,7	Α	
	erreichbare Qualitätsstufe QSV _{FZ,ges}									

	Stauraumbemessung - Abbiegeströme											
Zufahrt	Strom	Fahrzeuge q _{Fz,i} [Fz/h]	Faktoren f _{PE,i} [-]	Kapazität C _i [Fz/h]	S [%]	N _S [Fz]	Staulänge [m]					
Α												
В	4+6	75	1,013	453	95	0,59	7					
С	7+8	462	1,015	1773	95	1,05	13					

ABBILDUNGEN

- Abb. 1: Übersichtsplan
- Abb. 2.1: Verkehrsbelastung Bestand Zeitbereich am Vormittag
- **Abb. 2.2:** Verkehrsbelastung Bestand Zeitbereich am Nachmittag
- Abb. 3.1: Verkehrsbelastung Bestand Spitzenstunden am Vormittag
- Abb. 3.2: Verkehrsbelastung Bestand Spitzenstunden am Nachmittag
- **Abb. 4.1:** Verkehrsbelastung Prognose mit Bauabschnitt 1 Spitzenstunden am Vormittag
- **Abb. 4.2:** Verkehrsbelastung Prognose mit Bauabschnitt 1 Spitzenstunden am Nachmittag
- **Abb. 5.1:** Verkehrsbelastung Prognose mit Bauabschnitt 2 Spitzenstunden am Vormittag
- **Abb. 5.2:** Verkehrsbelastung Prognose mit Bauabschnitt 2 Spitzenstunden am Nachmittag
- **Abb. 6.1:** Verkehrsbelastung Prognose mit Bauabschnitt 3 Spitzenstunden am Vormittag
- **Abb. 6.2:** Verkehrsbelastung Prognose mit Bauabschnitt 3 Spitzenstunden am Nachmittag

Abb. 1

Gustav-Adolf-Kapēlle Nāu

e n

Knotenpunktzählung HEINZ + FEIER GmbH Dienstag, 25. Juni 2019 6.00-10.00 Uhr und 15.00-19.00 Uhr

geplantes Baugebiet "Schießhütte II"

Abb. 2.1

Verkehrsbelastung Bestand Vormittag 6.00-10.00 Uhr

[Kfz/Schwerverkehr / 4h]

e n

Knotenpunktzählung HEINZ + FEIER GmbH Dienstag, 25. Juni 2019 6.00-10.00 Uhr und 15.00-19.00 Uhr

Spurbezogene Belastung [Kfz/Schwerverkehr]

Abb. 2.2

[Kfz/Schwerverkehr / 4h]

e n

Knotenpunktzählung HEINZ + FEIER GmbH Dienstag, 25. Juni 2019 6.00-10.00 Uhr und 15.00-19.00 Uhr

Spurbezogene Belastung [Kfz/Schwerverkehr]

Abb. 3.1

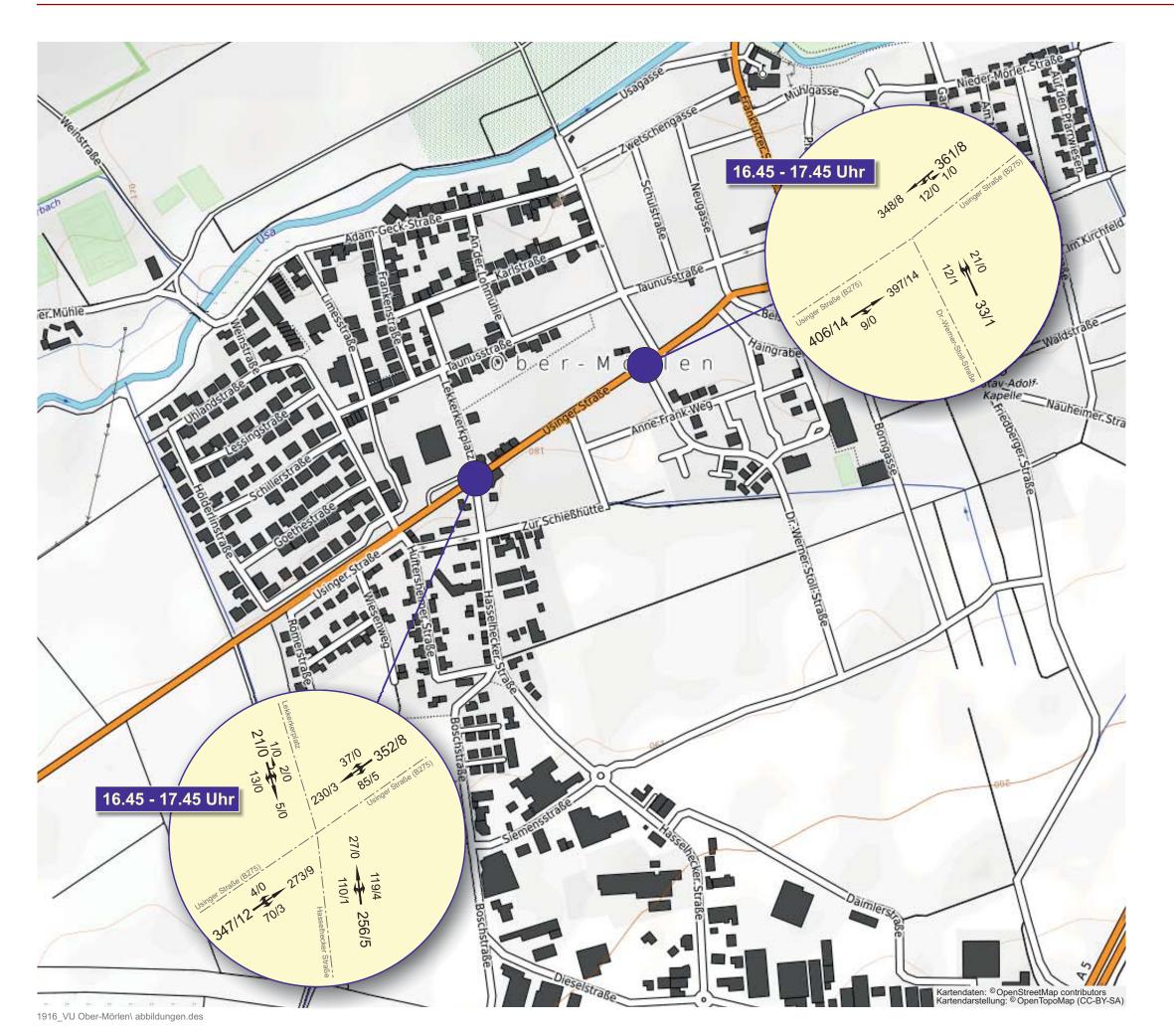
[Kfz/Schwerverkehr / h]

7.30 - 8.30 Uhr

e n

Knotenpunktzählung HEINZ + FEIER GmbH Dienstag, 25. Juni 2019 6.00-10.00 Uhr und 15.00-19.00 Uhr

Spurbezogene Belastung [Kfz/Schwerverkehr]



Verkehrsuntersuchung zum geplanten Baugebiet "Schießhütte II" in Ober-Mörlen

7.30 - 8.30 Uhr

Abb. 3.2

Verkehrsbelastung Bestand Spitzenstunde am Nachmittag

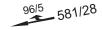
[Kfz/Schwerverkehr / h]

Knotenpunktzählung HEINZ + FEIER GmbH Dienstag, 25. Juni 2019 6.00-10.00 Uhr und 15.00-19.00 Uhr

Spurbezogene Belastung [Kfz/Schwerverkehr]

GEG Ober-Mörlen mbH

Abb. 4.1


Verkehrsbelastung Prognose mit Bauabschnitt 1

Spitzenstunde am Vormittag

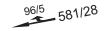
[Kfz/Schwerverkehr / h]

geplantes Baugebiet "Schießhütte II"

Spurbezogene Belastung [Kfz/Schwerverkehr]

GEG Ober-Mörlen mbH

Abb. 4.2


Verkehrsbelastung Prognose mit Bauabschnitt 1

Spitzenstunde am Nachmittag

[Kfz/Schwerverkehr / h]

geplantes Baugebiet "Schießhütte II"

Spurbezogene Belastung [Kfz/Schwerverkehr]

GEG Ober-Mörlen mbH

Abb. 5.1

Verkehrsbelastung Prognose mit Bauabschnitt 2

Spitzenstunde am Vormittag

[Kfz/Schwerverkehr / h]

geplantes Baugebiet "Schießhütte II"

Spurbezogene Belastung [Kfz/Schwerverkehr]

GEG Ober-Mörlen mbH

Verkehrsbelastung Prognose mit Bauabschnitt 2

Spitzenstunde am Nachmittag

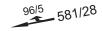
[Kfz/Schwerverkehr / h]

geplantes Baugebiet "Schießhütte II"

Spurbezogene Belastung [Kfz/Schwerverkehr]

GEG Ober-Mörlen mbH

Abb. 6.1


Verkehrsbelastung Prognose mit Bauabschnitt 3

Spitzenstunde am Vormittag

[Kfz/Schwerverkehr / h]

geplantes Baugebiet "Schießhütte II"

Spurbezogene Belastung [Kfz/Schwerverkehr]

GEG Ober-Mörlen mbH

Abb. 6.2

Verkehrsbelastung Prognose mit Bauabschnitt 3

Spitzenstunde am Nachmittag

[Kfz/Schwerverkehr / h]

geplantes Baugebiet "Schießhütte II"

Spurbezogene Belastung [Kfz/Schwerverkehr]

GEG Ober-Mörlen mbH

